【題目】如圖所示,在正方形ABCD中,E,F(xiàn)分別是邊AD,CD上的點,AE=ED,DF=DC,連結EF并延長交BC的延長線于點G,連結BE.

(1)求證:△ABE∽△DEF.

(2)若正方形的邊長為4,求BG的長.

【答案】(1)見解析;(2)BG=BC+CG=10.

【解析】

1)利用正方形的性質,可得∠A=D,根據(jù)已知可得AEAB=DFDE,根據(jù)有兩邊對應成比例且夾角相等三角形相似,可得△ABE∽△DEF;

2)根據(jù)相似三角形的預備定理得到△EDF∽△GCF,再根據(jù)相似的性質即可求得CG的長,那么BG的長也就不難得到.

1)證明:∵ABCD為正方形,

AD=AB=DC=BC,∠A=D=90 °.

AE=ED,

AEAB=12.

DF=DC

DFDE=12,

AEAB=DFDE

∴△ABE∽△DEF;

2)解:∵ABCD為正方形,

EDBG,

∴△EDF∽△GCF,

EDCG=DFCF.

又∵DF=DC,正方形的邊長為4,

ED=2,CG=6

BG=BC+CG=10.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C為圓O上一動點(不與點B重合),點T為圓O上一動點,且∠BOT60°,將BC繞點B順時針旋轉90°得到BD,連接TD,當TD最大時,∠BDT的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有三張分別標有數(shù)字、的卡片,它們除了數(shù)字外完全相同,把卡片背面朝上洗勻,從中任意抽取一張,將上面的數(shù)字記為不放回),再從中任意抽取一張,將上面的數(shù)字記為,這樣的數(shù)字,能使關于的一元二次方程有兩個正根的概率為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】尺規(guī)作圖:如圖,AD為⊙O的直徑。

(1)求作:⊙O的內接正六邊形ABCDEF.(要求:不寫作法,保留作圖痕跡);

(2)已知連接DF,⊙O的半徑為4,求DF的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某化工材料經(jīng)銷商購進一種化工材料若干千克,成本為每千克30元,物價部門規(guī)定其銷售單價不低于成本價且不高于成本價的2倍,經(jīng)試銷發(fā)現(xiàn),日銷售量(千克)與銷售單價(元)符合一次函數(shù)關系,如圖所示.

1)求之間的函數(shù)關系式,并寫出自變量的取值范圍;

2)若在銷售過程中每天還要支付其他費用500元,當銷售單價為多少時,該公司日獲利最大?最大獲利是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《九章算術》是中國傳統(tǒng)數(shù)學最重要的著作,奠定了中國傳統(tǒng)數(shù)學的基本框架.它的代數(shù)成就主要包括開方術、正負術和方程術.這本書中有一個問題:今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?.用現(xiàn)代白話文可以這樣理解:甲口袋中裝有黃金9枚(每枚黃金重量相同),乙口袋中裝有白銀11枚(每枚白銀重量相同),用稱分別稱這兩個口袋的重量,它們的重量相等.若從甲口袋中拿出1枚黃金放入乙口袋中,乙口袋中拿出1枚白銀放入甲口袋中,則甲口袋的重量比乙口袋的重量輕了13兩(袋子重量忽略不計).問一枚黃金和一枚白銀分別重多少兩?請根據(jù)題意列方程(組)解之.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下圖顯示了用計算機模擬隨機拋擲一枚硬幣的某次實驗的結果

下面有三個推斷:

①當拋擲次數(shù)是100時,計算機記錄“正面向上”的次數(shù)是47,所以“正面向上”的概率是0.47;

②隨著試驗次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動,顯示出一定的穩(wěn)定性,可以估計“正面向上”的概率是0.5

③若再次用計算機模擬此實驗,則當拋擲次數(shù)為150時,“正面向上”的頻率一定是0.45

其中合理的是

A. B. C. ①② D. ①③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有、兩個不透明的盒子,盒中裝有紅色、黃色、藍色卡片各1張,盒中裝有紅色、黃色卡片各1張,這些卡片除顏色外都相同.現(xiàn)分別從、兩個盒子中任意摸出一張卡片.

1)從盒中摸出紅色卡片的概率為______;

2)用畫樹狀圖或列表的方法,求摸出的兩張卡片中至少有一張紅色卡片的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,與軸交于點,若,且.

1)求反比例函數(shù)與一次函數(shù)的表達式;

2)若點x軸上一點,是等腰三角形,求點的坐標.

查看答案和解析>>

同步練習冊答案