【題目】閱讀與計算,請閱讀以下材料,并完成相應的問題.

角平分線分線段成比例定理,如圖1,在△ABC中,AD平分∠BAC,則.下面是這個定理的部分證明過程.

證明:如圖2,過CCEDA.交BA的延長線于E.…

任務:(1)請按照上面的證明思路,寫出該證明的剩余部分;

2)填空:如圖3,已知RtABC中,AB3,BC4,∠ABC90°,AD平分∠BAC,則△ABD的周長是   

【答案】1)見解析;(2

【解析】

1)過CCEDA.交BA的延長線于E,利用平行線分線段成比例定理得到,利用平行線的性質得∠2=ACE,∠1=E,由∠1=2得∠ACE=E,所以AE=AC,于是有;
2)先利用勾股定理計算出AC=5,再利用(1)中的結論得到,即,則可計算出BD=,然后利用勾股定理計算出AD=,從而可得到ABD的周長.

1)過CCEDA.交BA的延長線于E,

CEAD

,∠2=∠ACE,∠1=∠E,

AD平分∠BAC

∴∠1=∠2,

∴∠ACE=∠E,

AEAC,

;

2)∵AB3BC4,∠ABC90°,

AC5

AD平分∠BAC,

,即

BD,

AD,

∴△ABD的周長=+3+

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,以AC為直徑的OAB邊交于點D,過點DO的切線.交BC于點E

1)求證:BEEC

2)填空:若∠B30°,AC2,則DB   

當∠B   度時,以O,DE,C為頂點的四邊形是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學計劃購買A型和B型課桌凳共200套,經招標,購買一套A型課桌凳比購買一套B型課桌凳少用40元,,且購買4A型和6B型課桌凳共需1820元。

1)求購買一套A型課桌凳和一套B型課桌凳各需多少元?

2)學校根據實際情況,要求購買這兩種課桌凳總費用不能超過40880元,并且購買A型課桌凳的數(shù)量不能超過B型課桌凳的,求該校本次購買A型和B型課桌凳共有幾種方案?哪種方案的總費用最低?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:的角平分線,點,分別在,上,且,

1)如圖1,求證:四邊形是平行四邊形;

2)如圖2,若為等邊三角形,在不添加輔助線的情況下,請你直接寫出所有的全等三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】李華為了測量樓房AB的高度,他從樓底的B處沿著斜坡向上行走20m,到達坡頂D處.已知斜坡的坡角為15(sin15°=0.259cos15°=0.966,tan15°=0.268,結果精確到0.1m

1)求李華此時與地面的垂直距離CD的值;

2)李華的身高ED1.6m,他站在坡頂看樓頂A處的仰角為45,求樓房AB的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點在線段上,在的同側作等腰和等腰、分別交于點、.對于下列結論:

;;.其中正確的是(

A. ①②③ B. C. ①② D. ②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠ACB90°,以AC為直徑作⊙O,D為⊙O上一點,連接AD、BD、CD,且BDAB

1)求證:∠ABD2BDC;

2)若D為弧AC的中點,求tanBDC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】橫臥于清波之上的黃石大橋與已經貫通的五峰山隧道將成為恩施城區(qū)跨越東西方向的最大直線通道,它把六角亭老城區(qū)與知名景點女兒城連為一體,緩解了恩施城區(qū)交通擁堵的現(xiàn)狀.如圖,某數(shù)學興趣小組利用無人機在五峰山隧道正上空點P處測得黃石大橋西端點A的俯角為30°,東端點B(隧道西進口)的俯角為45°,隧道東出口C的俯角為22°,已知黃石大橋AB全長175米,隧道BC的長約多少米(計算結果精確到1米)?(參考數(shù)據:sin22°≈0.37,cos22°≈0.93tan22°≈0.40,1.4,1.7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AGBC于點G,AFDE于點F,EAF=GAC.

(1)求證:ADE∽△ABC;

(2)若AD=3,AB=5,求的值.

查看答案和解析>>

同步練習冊答案