科目: 來源: 題型:
【題目】如圖,的圖像交x軸于O點和A點,將此拋物線繞原點旋轉(zhuǎn)180°得圖像y2,y2與x軸交于O點和B點.
(1)若,則y2=_____________________
(2)設(shè)的頂點為C,則當△ABC為直角三角形時,請你任寫一個符合此條件的的表達式_________________
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,將矩形OABC置于平面直角坐標系中,點A,C分別在x,y軸的正半軸上,已知點B(4,2),將矩形OABC翻折,使得點C的對應點P恰好落在線段OA(包括端點O,A)上,折痕所在直線分別交BC、OA于點D、E;若點P在線段OA上運動時,過點P作OA的垂線交折痕所在直線于點Q.設(shè)點Q的坐標為(x,y),則y關(guān)于x的函數(shù)關(guān)系式是_______________
查看答案和解析>>
科目: 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a>0)圖象的頂點為D,其圖象與x軸的交點A、B的橫坐標分別為-1,3.與y軸負半軸交于點C,在下面五個結(jié)論中:①2a-b=0;②a+b+c>0;③c=-3a;④只有當a= 時,△ABD是等腰直角三角形;⑤使△ACB為等腰三角形的a值可以有三個.其中正確的結(jié)論是( )
A.1B.2C.3D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】我們規(guī)定:平面內(nèi)點A到圖形G上各個點的距離的最小值稱為該點到這個圖形的最小距離d,點A到圖形G上各個點的距離的最大值稱為該點到這個圖形的最大距離D,定義點A到圖形G的距離跨度為R=D-d.
(1)①如圖1,在平面直角坐標系xOy中,圖形G1為以O為圓心,2為半徑的圓,直接寫出以下各點到圖形G1的距離跨度:
A(1,0)的距離跨度______________;
B(-, )的距離跨度____________;
C(-3,-2)的距離跨度____________;
②根據(jù)①中的結(jié)果,猜想到圖形G1的距離跨度為2的所有的點組成的圖形的形狀是______________.
(2)如圖2,在平面直角坐標系xOy中,圖形G2為以D(-1,0)為圓心,2為半徑的圓,直線y=k(x-1)上存在到G2的距離跨度為2的點,求k的取值范圍.
(3)如圖3,在平面直角坐標系xOy中,射線OP:y=x(x≥0),⊙E是以3為半徑的圓,且圓心E在x軸上運動,若射線OP上存在點到⊙E的距離跨度為2,求出圓心E的橫坐標xE的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在正方形ABCD外側(cè)作直線AP,點B關(guān)于直線AP的對稱點為E,連接BE,DE,其中DE交直線AP于點F.
(1)依題意補全圖1;
(2)若∠PAB=20°,求∠ADF的度數(shù);
(3)如圖2,若45°<∠PAB<90°,用等式表示線段AB,FE,FD之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系 xOy 中,拋物線 y=ax2﹣4ax+3a﹣2(a≠0)與 x軸交于 A,B 兩(點 A 在點 B 左側(cè)).
(1)當拋物線過原點時,求實數(shù) a 的值;
(2)①求拋物線的對稱軸;
②求拋物線的頂點的縱坐標(用含 a 的代數(shù)式表示);
(3)當 AB≤4 時,求實數(shù) a 的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,Rt△ABC中,∠ACB=90°,點D為AB邊上的動點(點D不與點A,點B重合),過點D作ED⊥CD交直線AC于點E,已知∠A=30°,AB=4cm,在點D由點A到點B運動的過程中,設(shè)AD=xcm,AE=ycm.
(1)通過取點、畫圖、測量,得到了x與y的幾組值,如表:
小東根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.下面是小東的探究過程,請補充完整:(說明:補全表格時相關(guān)數(shù)值,保留一位小數(shù))
(2)在如圖2的平面直角坐標系xOy中,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當AE=AD時,AD的長度約為 cm.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,以40m/s的速度將小球沿與地面成30°角的方向擊出時,小球的飛行路線是一條拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時間t(單位:s)之間具有函數(shù)關(guān)系h=20t﹣5t2.
(1)小球飛行時間是多少時,小球最高?最大高度是多少?
(2)小球飛行時間t在什么范圍時,飛行高度不低于15m?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AB⊥BC,點E在AB上,∠DEC=90°.
(1)求證:△ADE∽△BEC.
(2)若AD=1,BC=3,AE=2,求AB的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】下面是小蕓設(shè)計的“過圓外一點作已知圓的切線”的尺規(guī)作圖過程.
已知:⊙O及⊙O外一點P.
求作:⊙O的一條切線,使這條切線經(jīng)過點P.
作法:①連接OP,作OP的垂直平分線l,交OP于點A;
②以A為圓心,AO為半徑作圓,交⊙O于點M;
③作直線PM,則直線PM即為⊙O的切線.
根據(jù)小蕓設(shè)計的尺規(guī)作圖過程,
(1)用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成證明:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com