科目: 來源: 題型:
【題目】如圖,已知拋物線y=ax2+x+c與x軸交于A,B兩點,與y軸交于C點,且A(2,0),C(0,-4),直線l:y=-x-4與x軸交于點D,點P是拋物線y=ax2+x+c上的一動點,過點P作PE⊥x軸,垂足為E,交直線l于F.
(1)試求該拋物線表達式;
(2)如圖(1),若點P在第三象限,四邊形PCOF是平行四邊形,求P點的坐標(biāo);
(3)如圖(2),連接AC.求證:△ACD是直角三角形.
查看答案和解析>>
科目: 來源: 題型:
【題目】在等腰△ABC中,AC=BC,以BC為直徑的⊙O分別與AB,AC相交于點D,E,過點D作DF⊥AC,垂足為點F.
(1)求證:DF是⊙O的切線;
(2)分別延長CB,F(xiàn)D,相交于點G,∠A=60°,⊙O的半徑為6,求陰影部分的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,邊AB的垂直平分線交AD于點E,交CB的延長線于點F,連接AF,BE.
(1)求證:△AGE≌△BGF;
(2)試判斷四邊形AFBE的形狀,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了傳承中華優(yōu)秀傳統(tǒng)文化,市教育局決定開展“經(jīng)典誦讀進校園”活動,某校團委組織八年級100名學(xué)生進行“經(jīng)典誦讀”選拔賽,賽后對全體參賽學(xué)生的成績進行整理,得到下列不完整的統(tǒng)計圖表。
組別 | 分數(shù)段 | 頻次 | 頻率 |
A | 60x<70 | 17 | 0.17 |
B | 70x<80 | 30 | a |
C | 80x<90 | b | 0.45 |
D | 90x<100 | 8 | 0.08 |
請根據(jù)所給信息,解答以下問題:
(1)表中a=___,b=___;
(2)請計算扇形統(tǒng)計圖中B組對應(yīng)扇形的圓心角的度數(shù);
(3)已知有四名同學(xué)均取得98分的最好成績,其中包括來自同一班級的甲、乙兩名同學(xué),學(xué)校將從這四名同學(xué)中隨機選出兩名參加市級比賽,請用列表法或畫樹狀圖法求甲、乙兩名同學(xué)都被選中的概率。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象與x軸、y軸交于A、B兩點,交反比例函數(shù)于C、D兩點,DE⊥x軸于點E,已知C點的坐標(biāo)是(6,-1),DE=3.
(1)求反比例函數(shù)與一次函數(shù)的解析式
(2)根據(jù)圖象直接回答:當(dāng)x為何值時,一次函數(shù)的值大于反比例函數(shù)的值.
(3)求△OAD的面積S△OAD.
查看答案和解析>>
科目: 來源: 題型:
【題目】為推進郴州市創(chuàng)建國家森林城市工作,盡快實現(xiàn)“讓森林走進城市,讓城市擁抱森林”的構(gòu)想,今年三月份,某縣園林辦購買了甲、乙兩種樹苗共1000棵,其中甲種樹苗每棵40元,乙種樹苗每棵50元,據(jù)相關(guān)資料表明:甲、乙兩種樹苗的成活率分別為85%和90%.
(1)若購買甲、乙兩種樹苗共用去了46500元,則購買甲、乙兩種樹苗各多少棵?
(2)若要使這批樹苗的成活率不低于88%,則至多可購買甲種樹苗多少棵?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖示二次函數(shù)y=ax2+bx+c的對稱軸在y軸的右側(cè),其圖象與x軸交于點A(﹣1,0)與點C(x2,0),且與y軸交于點B(0,﹣2),小強得到以下結(jié)論:①0<a<2;②﹣1<b<0;③c=﹣1;④當(dāng)|a|=|b|時x2>﹣1;以上結(jié)論中正確結(jié)論的序號為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(-1,),以原點O為中心,將點A順時針旋轉(zhuǎn)90°得到點A′,則點A′坐標(biāo)為______.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知m,n分別是關(guān)于x的一元二次方程ax2+bx+c=a與ax2+bx+c=b的一個根,且m=n+1.
(1)當(dāng)m=2,a=﹣1時,求b與c的值;
(2)用只含字母a,n的代數(shù)式表示b;
(3)當(dāng)a<0時,函數(shù)y=ax2+bx+c滿足b2﹣4ac=a,b+c≥2a,n≤﹣,求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,OA是⊙O的半徑,點E為圓內(nèi)一點,且OA⊥OE,AB是⊙O的切線,EB交⊙O于點F,BQ⊥AF于點Q.
(1)如圖1,求證:OE∥AB;
(2)如圖2,若AB=AO,求的值;
(3)如圖3,連接OF,∠EOF的平分線交射線AF于點P,若OA=2,cos∠PAB=,求OP的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com