科目: 來源: 題型:
【題目】已知拋物線y1=x2+mx+n,直線y2=2x+1,拋物線y1的對稱軸與直線y2的交點為點A,且點A的縱坐標(biāo)為5.
(1)求m的值;
(2)若點A與拋物線y1的頂點B的距離為4,求拋物線y1的解析式;
(3)若拋物線y1與直線y2只有一個公共點,求n的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在Rt△ABC中,∠A=30°,∠ACB=90°,AB=10,D為AC上點.將BD繞點B順時針旋轉(zhuǎn)60°得到BE,連接CE.
(1)證明:∠ABD=∠CBE;
(2)連接ED,若ED=2,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一次函數(shù)y=x的圖象與反比例函數(shù)y═的圖象交于A,B兩點,且點A坐標(biāo)為(1,m).
(1)求此反比例函數(shù)的解析式;
(2)當(dāng)x取何值時,一次函數(shù)大于反比例函數(shù)的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠C=72°,△ABC繞點B逆時針旋轉(zhuǎn),當(dāng)點C的對應(yīng)點C1落在邊AC上時,設(shè)AC的對應(yīng)邊A1C1與AB的交點為E,則∠BEC1=___°.
查看答案和解析>>
科目: 來源: 題型:
【題目】類比特殊四邊形的學(xué)習(xí),我們可以定義:有一組對角相等而另一組對角不相等的凸四邊形叫做“等對角四邊形”.
探索體驗
(1)如圖①,已知四邊形ABCD是“等對角四邊形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度數(shù).
(2)如圖②,若AB=AD=a,CB=CD=b,且a≠b,那么四邊形ABCD是“等對角四邊形”嗎?試說明理由.
嘗試應(yīng)用
(3)如圖③,在邊長為6的正方形木板ABEF上裁出“等對角四邊形”ABCD,若已經(jīng)確定DA=4,∠DAB=60°,是否在正方形ABEF內(nèi)(包括邊上)存在一點點C,使四邊形ABCD以∠DAB=∠BCD為等對角的四邊形的面積最大?若存在,試求出四邊形ABCD的最大面積;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知拋物線y=x2+bx+c經(jīng)過A(0,3),B(1,0)兩點,頂點為M.
(1)求b、c的值;
(2)若只沿y軸上下平移該拋物線后與y軸的交點為A1,頂點為M1,且四邊形AMM1A1是菱形,寫出平移后拋物線的表達(dá)式.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形OABC是平行四邊形,以O(shè)為圓心,OA為半徑的圓交AB于D,延長AO交⊙O于E,連接CD,CE,若CE是⊙O的切線,解答下列問題:
(1)求證:CD是⊙O的切線;
(2)若BC=3,CD=4,求平行四邊形OABC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著信息技術(shù)的快速發(fā)展,“互聯(lián)網(wǎng)+”滲透到我們?nèi)粘I畹母鱾領(lǐng)域,網(wǎng)上在線學(xué)習(xí)交流已不再是夢,現(xiàn)有某教學(xué)網(wǎng)站策劃了A,B兩種上網(wǎng)學(xué)習(xí)的月收費方式(如表格、圖象所示):
收費方式 | 月使用費/元 | 包時上網(wǎng)時間/h | 超時費(元/min) |
A | 7 | 25 | 0.01 |
B | m | n | p |
設(shè)每月上網(wǎng)學(xué)習(xí)時間為x小時,方案A,B的收費金額分別為yA,yB.
(1)如圖,是yB與x之間函數(shù)關(guān)系的圖象,請根據(jù)圖象寫出m,n的值.
(2)寫出yA與x之間的函數(shù)關(guān)系式.
(3)若某同學(xué)每月上網(wǎng)學(xué)習(xí)時間為70小時,那么選擇哪種方式上網(wǎng)學(xué)習(xí)合算,為什么?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①為一種平板電腦保護(hù)套的支架效果圖,AM固定于平板電腦背面,與可活動的MB、CB部分組成支架.平板電腦的下端N保持在保護(hù)套CB上,不考慮拐角處的弧度及平板電腦和保護(hù)套的厚度,繪制成圖②,其中AN表示平板電腦,M為AN上的定點,AN=CB=20cm,AM=8cm,MB=MN,我們把∠ANB叫做傾斜角,根據(jù)以上數(shù)據(jù),判斷傾斜角能小于30°嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com