【題目】如圖,PA、PB是⊙O的兩條切線,A、B是切點,AC是⊙O的直徑,∠BAC=35°,求∠P的度數(shù).

【答案】70°

【解析】

試題由PAPB都為圓的切線,根據(jù)切線的性質得到OAAP垂直,OBBP垂直,可得出∠OAP∠OBP都為直角,又OA=OB,根據(jù)等邊對等角可得∠ABO∠BAC相等,由∠BAC的度數(shù)求出∠ABO的度數(shù),進而利用三角形的內角和定理求出∠AOB的度數(shù),在四邊形APBO中,利用四邊形的內角和定理即可求出∠P的度數(shù).

試題解析:∵PAPB分別是⊙O的切線,

∴OA⊥AP,OB⊥BP,

∴∠OAP=∠OBP=90°,

∵OA=OB,∠BAC=35°

∴∠ABO=∠BAC=35°,

∴∠AOB=180°-35°-35°=110°,

在四邊形APBO中,∠OAP=∠OBP=90°,∠AOB=110°,

∠P=360°-∠OAP+∠OBP+∠AOB=70°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtBOARtCOA的斜邊在x軸上,BA6,A100),ACOB相交于點E,且CACO,連接BC,下列判斷一定正確的是(  )

ABE∽△OCE;②C55);③BC;④SABC3

A. ①③ B. ②④ C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形ABCD中,AB=3,EAD邊上的一點(EA、D不重合),以BE為邊畫正方形BEFG,邊EF與邊CD交于點H.

(1)E為邊AD的中點時,求DH的長;

(2)DE=x,CH=y,yx之間的函數(shù)關系式,并求出y的最小值;

(3)DE=,將正方形BEFG繞點E逆時針旋轉適當角度后得到正方形B'EF'G',如圖2,邊EF'CD交于點N、EB'BC交于點M,連結MN,求∠ENM的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD沿AF折疊,使點D落在BC邊的點E處,過點EEGCDAF于點G,連接DG.給出以下結論:①DG=DF;②四邊形EFDG是菱形;③EG2GF×AF;④當AG=6,EG=2時,BE的長為 ,其中正確的結論個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①為一種平板電腦保護套的支架效果圖,AM固定于平板電腦背面,與可活動的MB、CB部分組成支架.平板電腦的下端N保持在保護套CB上,不考慮拐角處的弧度及平板電腦和保護套的厚度,繪制成圖②,其中AN表示平板電腦,MAN上的定點,AN=CB=20cm,AM=8cm,MB=MN,我們把∠ANB叫做傾斜角,根據(jù)以上數(shù)據(jù),判斷傾斜角能小于30°嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BC為⊙O的直徑,點A是弧BC的中點,連接BA并延長至點D,使得AD=AB,連接CD,點E為CD上一點,連接BE交弧BC于點F,連接AF.

(1)求證:CD為⊙O的切線;

(2)求證:∠DAF=∠BEC;

(3)若DE=2CE=4,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABO的直徑,弦CDAB相交,∠BCD28°.

I)如圖,求∠ABD的大小;

(Ⅱ)如圖,過點DO的切線,與AB的延長線交于點P,若DPAC,求∠OCD的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設計建造一條道路,路基的橫斷面為梯形ABCD,如圖(單位:米).設路基高為h,兩側的坡角分別為,已知h=2,,

(1)求路基底部AB的寬;

(2)修筑這樣的路基1000米,需要多少土石方?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC和A′B′C是兩個完全重合的直角三角板,B=30°,斜邊長為10cm.三角板A′B′C繞直角頂點C順時針旋轉,當點A′落在AB邊上時,CA′旋轉所構成的扇形的弧長為 cm.

查看答案和解析>>

同步練習冊答案