科目: 來源: 題型:
【題目】如圖,矩形OABC的頂點A,C在x,y軸正半軸上,反比例函數(shù)過OB的中點D,與BC,AB交于M,N,且已知D(m,2),N(8,n).
(1)求反比例函數(shù)的解析式;
(2)若將矩形一角折疊,使點O與點M重合,折痕為PQ,求點P的坐標;
(3)如圖2,若將沿OM向左翻折,得到菱形OQMR,將該菱形沿射線OB以每秒個單位向上平移t秒.
① 用t的代數(shù)式表示和的坐標;
② 要使該菱形始終與反比例函數(shù)圖像有交點,求t的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某超市銷售一種商品,成本是每千克30元,規(guī)定每千克售價不低于成本,且不高于90元.經(jīng)市場調查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關系,當售價每千克50元時,銷售量y為80千克;當售價每千克60元時,銷售量y為60千克;
(1)求y與x之間的函數(shù)表達式;
(2)設商品每天的總利潤為W(元),求W與x之間的函數(shù)表達式(利潤=收入﹣成本),并指出售價為多少元時獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形ABCD中,AD=8,點E是對角線AC上一點,連接DE,過點E作EF⊥ED,交AB于點F,連接DF,交AC于點G,將△EFG沿EF翻折,得到△EFM,連接DM,交EF于點N,若點F是AB的中點,則(1)FM=_____;(2)tan∠MDE=_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知△AOD是等腰三角形,點A(12,0),O為坐標原點,P是線段OA上任意一點(不含端點O,A),過P,O兩點的二次函數(shù)y1,和過P、A兩點的二次函數(shù)y2,的開口均向下,它們的頂點分別為B,C,點B,C分別在OD、AD上.當OD=AD=10時,則兩個二次函數(shù)的最大值之和等于_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在以O為原點的直角坐標系中,點A,C分別在x軸、y軸的正半軸上,點B在第一象限內,四邊形OABC是矩形,反比例函數(shù)y=(x>0)與AB相交于點D,與BC相交于點E,若BE=4CE,四邊形ODBE的面積是8,則k=_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交AB,AD于點M,N;②分別以M,N為圓心,以大于MN長為半徑作弧,兩弧相交于點P;③作射線AP,交邊CD于點Q,若DC=3QC,BC=6,則平行四邊形ABCD周長為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸是直線x=1,下列結論①abc>0;②b2﹣4ac<0;③a+b+c<0;④2a+b=0.其中正確的是( 。
A. ①②③ B. ②④ C. ②③ D. ①③④
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,有長為 24m 的籬笆,現(xiàn)一面利用墻(墻的最大可用長度 a 為 10m)圍成中間隔有一道籬笆的長方形花圃,設花圃的寬 AB 為 xm,面積為 Sm2.
(1) 求 S 與 x 的函數(shù)關系式及 x 值的取值范圍;
(2) 要圍成面積為 45m2 的花圃,AB 的長是多少米?
(3) 當 AB 的長是多少米時,圍成的花圃的面積最大?
查看答案和解析>>
科目: 來源: 題型:
【題目】某校研究學生的課余愛好情況,采取抽樣調查的方法,從閱讀、運動、娛樂、上網(wǎng)等四個方面調查了若干名學生的興趣愛好,并將調查結果繪制成下面兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:
(1)在這次調查中,一共調查了 名學生;
(2)補全條形統(tǒng)計圖;
(3)若該校共有1500名學生,估計愛好運動的學生有 人;
(4)在全校同學中隨機選取一名學生參加演講比賽,用頻率估計概率,則選出的恰好是愛好閱讀的學生的概率是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,若將△ABC繞點C順時針旋轉180°得到△EFC,連接AF、BE.
(1)求證:四邊形ABEF是平行四邊形;
(2)當∠ABC為多少度時,四邊形ABEF為矩形?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com