相關習題
 0  360033  360041  360047  360051  360057  360059  360063  360069  360071  360077  360083  360087  360089  360093  360099  360101  360107  360111  360113  360117  360119  360123  360125  360127  360128  360129  360131  360132  360133  360135  360137  360141  360143  360147  360149  360153  360159  360161  360167  360171  360173  360177  360183  360189  360191  360197  360201  360203  360209  360213  360219  360227  366461 

科目: 來源: 題型:

【題目】如圖,矩形OABC的頂點A,Cxy軸正半軸上,反比例函數(shù)OB的中點D,與BC,AB交于M,N,且已知D(m,2),N(8,n)

1)求反比例函數(shù)的解析式;

2)若將矩形一角折疊,使點O與點M重合,折痕為PQ,求點P的坐標;

3)如圖2,若將沿OM向左翻折,得到菱形OQMR,將該菱形沿射線OB以每秒個單位向上平移t秒.

t的代數(shù)式表示的坐標;

要使該菱形始終與反比例函數(shù)圖像有交點,求t的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】某超市銷售一種商品,成本是每千克30元,規(guī)定每千克售價不低于成本,且不高于90元.經(jīng)市場調查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關系,當售價每千克50元時,銷售量y80千克;當售價每千克60元時,銷售量y60千克;

(1)求yx之間的函數(shù)表達式;

(2)設商品每天的總利潤為W(元),求Wx之間的函數(shù)表達式(利潤=收入﹣成本),并指出售價為多少元時獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,正方形ABCD中,AD=8,點E是對角線AC上一點,連接DE,過點EEFED,交AB于點F,連接DF,交AC于點G,將△EFG沿EF翻折,得到△EFM,連接DM,交EF于點N,若點FAB的中點,則(1)FM_____;(2)tan∠MDE_____

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知AOD是等腰三角形,點A(12,0),O為坐標原點,P是線段OA上任意一點(不含端點O,A),過P,O兩點的二次函數(shù)y1,和過P、A兩點的二次函數(shù)y2,的開口均向下,它們的頂點分別為B,C,點B,C分別在OD、AD上.當OD=AD=10時,則兩個二次函數(shù)的最大值之和等于_____

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在以O為原點的直角坐標系中,點A,C分別在x軸、y軸的正半軸上,點B在第一象限內,四邊形OABC是矩形,反比例函數(shù)yx>0)與AB相交于點D,與BC相交于點E,若BE=4CE,四邊形ODBE的面積是8,則k_____

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:A為圓心,任意長為半徑作弧,分別交AB,AD于點M,N;分別以M,N為圓心,以大于MN長為半徑作弧,兩弧相交于點P作射線AP,交邊CD于點Q,若DC=3QC,BC=6,則平行四邊形ABCD周長為_____

查看答案和解析>>

科目: 來源: 題型:

【題目】二次函數(shù)yax2+bx+ca≠0)的圖象如圖所示,對稱軸是直線x=1,下列結論abc>0;b2﹣4ac<0;a+b+c<0;2a+b=0.其中正確的是( 。

A. ①②③ B. ②④ C. ②③ D. ①③④

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,有長為 24m 的籬笆,現(xiàn)一面利用墻(墻的最大可用長度 a 10m)圍成中間隔有一道籬笆的長方形花圃,設花圃的寬 AB xm,面積為 Sm2

1 S x 的函數(shù)關系式及 x 值的取值范圍;

2 要圍成面積為 45m2 的花圃,AB 的長是多少米?

3 AB 的長是多少米時,圍成的花圃的面積最大?

查看答案和解析>>

科目: 來源: 題型:

【題目】某校研究學生的課余愛好情況,采取抽樣調查的方法,從閱讀、運動、娛樂、上網(wǎng)等四個方面調查了若干名學生的興趣愛好,并將調查結果繪制成下面兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:

(1)在這次調查中,一共調查了   名學生;

(2)補全條形統(tǒng)計圖;

(3)若該校共有1500名學生,估計愛好運動的學生有   人;

(4)在全校同學中隨機選取一名學生參加演講比賽,用頻率估計概率,則選出的恰好是愛好閱讀的學生的概率是   

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,若將△ABC繞點C順時針旋轉180°得到△EFC,連接AF、BE.

(1)求證:四邊形ABEF是平行四邊形;

(2)∠ABC為多少度時,四邊形ABEF為矩形?請說明理由.

查看答案和解析>>

同步練習冊答案