【題目】如圖,已知AOD是等腰三角形,點(diǎn)A(12,0),O為坐標(biāo)原點(diǎn),P是線段OA上任意一點(diǎn)(不含端點(diǎn)O,A),過(guò)P,O兩點(diǎn)的二次函數(shù)y1,和過(guò)P、A兩點(diǎn)的二次函數(shù)y2,的開(kāi)口均向下,它們的頂點(diǎn)分別為B,C,點(diǎn)B,C分別在OD、AD上.當(dāng)OD=AD=10時(shí),則兩個(gè)二次函數(shù)的最大值之和等于_____

【答案】8

【解析】

過(guò)BBFOAF,過(guò)DDEOAE,過(guò)CCMOAM,設(shè)P(2x,0),根據(jù)二次函數(shù)的對(duì)稱性得出OF=PF=x,OBF∽△ODE,ACM∽△ADE,推出,,代入求出BFCM,相加即可求出答案.

過(guò)BBFOAF,過(guò)DDEOAE,過(guò)CCMOAM,

BFOA,DEOA,CMOA,

BFDECM,

OD=AD=10,DEOA,

OE=EA=OA=6,

由勾股定理得:DE==8.

設(shè)P(2x,0),根據(jù)二次函數(shù)的對(duì)稱性得出OF=PF=x,

BFDECM,

∴△OBF∽△ODE,ACM∽△ADE,

,

AM=PM=(OA-OP)=(12-2x)=6-x,

,

解得:BF=x,CM=8-x,

BF+CM=8.

故答案為:8.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線 x軸交與A(1,0),B(- 3,0)兩點(diǎn).

⑴求該拋物線的解析式;

⑵設(shè)⑴中的拋物線交y軸與C點(diǎn),在該拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得QAC的周長(zhǎng)最小?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

⑶在拋物線上BC段是否存在點(diǎn)P,使得PBC面積最大,若存在,求P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明參加某個(gè)智力競(jìng)答節(jié)目,答對(duì)最后兩道單選題就順利通關(guān).第一道單選題有3個(gè)選項(xiàng),第二道單選題有4個(gè)選項(xiàng),這兩道題小明都不會(huì),不過(guò)小明還有一個(gè)求助沒(méi)有用(使用求助可以讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).

(1)如果小明第一題不使用求助,那么小明答對(duì)第一道題的概率是  

(2)如果小明將求助留在第二題使用,請(qǐng)用樹(shù)狀圖或者列表來(lái)分析小明順利通關(guān)的概率.

(3)從概率的角度分析,你建議小明在第幾題使用求助.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在中,,,以OB為邊,在外作等邊,DOB的中點(diǎn),連接AD并延長(zhǎng)交OCE

1)求證:四邊形ABCE是平行四邊形;

2)連接ACBE交于點(diǎn)P,求AP的長(zhǎng)及AP邊上的高BH;

3)在(2)的條件下,將四邊形OABC置于如圖所示的平面直角坐標(biāo)系中,以E為坐標(biāo)原點(diǎn),其余條件不變,以AP為邊向右上方作正方形APMN

M點(diǎn)的坐標(biāo)為

②直接寫出正方形APMN與四邊形OABC重疊部分的面積(圖中陰影部分).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校研究學(xué)生的課余愛(ài)好情況,采取抽樣調(diào)查的方法,從閱讀、運(yùn)動(dòng)、娛樂(lè)、上網(wǎng)等四個(gè)方面調(diào)查了若干名學(xué)生的興趣愛(ài)好,并將調(diào)查結(jié)果繪制成下面兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題:

(1)在這次調(diào)查中,一共調(diào)查了   名學(xué)生;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該校共有1500名學(xué)生,估計(jì)愛(ài)好運(yùn)動(dòng)的學(xué)生有   人;

(4)在全校同學(xué)中隨機(jī)選取一名學(xué)生參加演講比賽,用頻率估計(jì)概率,則選出的恰好是愛(ài)好閱讀的學(xué)生的概率是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+x+cx軸交于AB兩點(diǎn),A點(diǎn)坐標(biāo)為(﹣3,0),與y軸交于點(diǎn)C,點(diǎn)C坐標(biāo)為(0.﹣6),連接BC,點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)D,點(diǎn)Px軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過(guò)點(diǎn)Px軸的垂線l交拋物線于點(diǎn)Q,交直線BD于點(diǎn)M

(1)求二次函數(shù)解析式;

(2)點(diǎn)Px軸上運(yùn)動(dòng),若﹣6≤m≤2時(shí),求線段MQ長(zhǎng)度的最大值.

(3)點(diǎn)Px軸上運(yùn)動(dòng)時(shí),N為平面內(nèi)一點(diǎn),使得點(diǎn)B、C、MN為頂點(diǎn)的四邊形為菱形?如果存在,請(qǐng)直接寫出點(diǎn)N坐標(biāo);不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),中學(xué)生的身體素質(zhì)普遍下降,某校為了提高本校學(xué)生的身體素質(zhì),落實(shí)教育部門“在校學(xué)生每天體育鍛煉時(shí)間不少于1小時(shí)”的文件精神,對(duì)部分學(xué)生的每天體育鍛煉時(shí)間進(jìn)行了調(diào)查統(tǒng)計(jì).以下是本次調(diào)查結(jié)果的統(tǒng)計(jì)表和統(tǒng)計(jì)圖.

組別

A

B

C

D

E

時(shí)間t(分鐘)

t<40

40≤t<60

60≤t<80

80≤t<100

t≥100

人數(shù)

12

30

a

24

12

(1)求出本次被調(diào)查的學(xué)生數(shù);

(2)請(qǐng)求出統(tǒng)計(jì)表中a的值;

(3)求各組人數(shù)的眾數(shù);

(4)根據(jù)調(diào)查結(jié)果,請(qǐng)你估計(jì)該校2400名學(xué)生中每天體育鍛煉時(shí)間不少于1小時(shí)的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知拋物線yx2﹣2ax+b的頂點(diǎn)在x軸上,Px1,m,Qx2,m)(x1x2是此拋物線上的兩點(diǎn).

(1)a=1.

①當(dāng)mb時(shí),求x1,x2的值;

②將拋物線沿y軸平移,使得它與x軸的兩個(gè)交點(diǎn)間的距離為4,試描述出這一變化過(guò)程;

(2)若存在實(shí)數(shù)c,使得x1c﹣1,且x2c+7成立,則m的取值范圍是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O

(1)畫(huà)出△AOB平移后的三角形,其平移后的方向?yàn)樯渚AD的方向,平移的距離為AD的長(zhǎng).

(2)觀察平移后的圖形,除了矩形ABCD外,還有一種特殊的平行四邊形?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案