科目: 來源: 題型:
【題目】教室里的飲水機接通電源就進入自動程序,開機加熱時每分鐘上升10℃,加熱到100℃,停止加熱,水溫開始下降,此時水溫(℃)與開機后用時(min)成反比例關(guān)系.直至水溫降至30℃,飲水機關(guān)機.飲水機關(guān)機后即刻自動開機,重復上述自動程序.若在水溫為30℃時,接通電源后,水溫y(℃)和時間(min)的關(guān)系如圖,為了在上午第一節(jié)下課時(8:45)能喝到不超過50℃的水,則接通電源的時間可以是當天上午的( )
A.7:20 B.7:30 C.7:45 D.7:50
查看答案和解析>>
科目: 來源: 題型:
【題目】下列說法正確的是( 。
①最大的負整數(shù)是﹣1;②數(shù)軸上表示數(shù)2 和﹣2的點到原點的距離相等;③當a≤0時,|a|=﹣a成立;④a的倒數(shù)是;⑤(﹣2)2 和﹣22相等.
A. 2 個 B. 3 個 C. 4 個 D. 5 個
查看答案和解析>>
科目: 來源: 題型:
【題目】同學們知道,|8﹣3|表示8與3的差的絕對值,也可理解為數(shù)軸上表示數(shù)8與3兩點間的距離.試探索:
(1)填空:|8+3|表示數(shù)軸上數(shù)8與數(shù) 兩點間的距離;
(2)|x+5|+|x﹣2|表示數(shù)軸上數(shù)x與數(shù) 的距離和數(shù)x與數(shù) 的距離的和.
(3)滿足|x+5|+|x﹣2|=7的所有整數(shù)x的值是 .
(4)由以上探索猜想對于任何有理數(shù)x,|x﹣3|+|x﹣6|是否有最小值?如果有寫出最小值;如果沒有,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點D坐標(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,一次函數(shù)y=kx+1的圖象與反比例函數(shù)y= 的圖象在第一象限相交于點A,過點A分別作x軸、y軸的垂線,垂足為點B、C,如果四邊形OBAC是正方形.
(1)求一次函數(shù)的解析式。
(2)一次函數(shù)的圖象與y軸交于點D. 在x軸上是否存在一點P,使得PA+PD最小?若存在,請求出P點坐標及最小值;若不存在,請說明理由。
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,邊長為5的正方形ABCD的對角線AC、BD相交于點P,頂點A在x軸正半軸上運動,頂點B在y軸正半軸上運動(x軸的正半軸、y軸的正半軸都不包含原點O),頂點C. D都在第一象限。
(1)當點A坐標為(4,0)時,求點D的坐標;
(2)求證:OP平分∠AOB;
(3)直接寫出OP長的取值范圍(不要證明).
查看答案和解析>>
科目: 來源: 題型:
【題目】電商時代使得網(wǎng)購更加便捷和普及.小張響應(yīng)國家號召,自主創(chuàng)業(yè),開了家淘寶店.他購進一種成本為100元/件的新商品,在試銷中發(fā)現(xiàn):銷售單價x(元)與每天銷售量y(件)之間滿足如圖所示的關(guān)系.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若某天小張銷售該產(chǎn)品獲得的利潤為1200元,求銷售單價x的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,奧運福娃在5×5的方格(每小格邊長為1m)上沿著網(wǎng)格線運動.貝貝從A處出發(fā)去尋找B、C、D處的其它福娃,規(guī)定:向上向右走為正,向下向左走為負.如果從A到B記為:A→B(+1,+4),從B到A記為:B→A(﹣1,﹣4),其中第一個數(shù)表示左右方向,第二個數(shù)表示上下方向,那么圖中
(1)B→D( , ),C→ (﹣3,﹣4);
(2)若貝貝的行走路線為A→B→C→D,請計算貝貝走過的路程.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某花園護欄是用直徑為80厘米的半圓形條鋼組制而成,且每增加一個半圓形條鋼,護欄長度就增加a厘米(a>0).設(shè)半圓形條鋼的總個數(shù)為x(x為正整數(shù)),護欄總長度為y厘米.
(1)當a=50,x=2時,護欄總長度y為 厘米;
(2)當a=60時,用含x的代數(shù)式表示護欄總長度y(結(jié)果要化簡);
(3)在(2)的條件下,若要使護欄總長度為50x+430,請求出x的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商店準備進一批季節(jié)性小家電,每個進價為40元,經(jīng)市場預(yù)測,銷售定價為50元,可售出400個;定價每增加1元,銷售量將減少10個.設(shè)每個定價增加x元.
(1)寫出售出一個可獲得的利潤是多少元(用含x的代數(shù)式表示)?
(2)商店若準備獲得利潤6000元,并且使進貨量較少,則每個定價為多少元?應(yīng)進貨多少個?
(3)商店若要獲得最大利潤,則每個應(yīng)定價多少元?獲得的最大利潤是多少?
【答案】(1)x+10元;(2)每個定價為70元,應(yīng)進貨200個.(3)每個定價為65元時得最大利潤,可獲得的最大利潤是6250元.
【解析】試題分析:(1)根據(jù)利潤=銷售價-進價列關(guān)系式,(2)總利潤=每個的利潤×銷售量,銷售量為400-10x,列方程求解,根據(jù)題意取舍,(3)利用函數(shù)的性質(zhì)求最值.
試題解析:由題意得:(1)50+x-40=x+10(元),
(2)設(shè)每個定價增加x元,
列出方程為:(x+10)(400-10x)=6000,解得:x1=10,x2=20,要使進貨量較少,則每個定價為70元,應(yīng)進貨200個,
(3)設(shè)每個定價增加x元,獲得利潤為y元,
y=(x+10)(400-10x)=-10x2+300x+4000=-10(x-15)2+6250,當x=15時,y有最大值為6250,所以每個定價為65元時得最大利潤,可獲得的最大利潤是6250元.
【題型】解答題
【結(jié)束】
24
【題目】猜想與證明:
如圖1,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點在一條直線上,CE在邊CD上,連接AF,若M為AF的中點,連接DM、ME,試猜想DM與ME的關(guān)系,并證明你的結(jié)論.
拓展與延伸:
(1)若將”猜想與證明“中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DM和ME的關(guān)系為 .
(2)如圖2擺放正方形紙片ABCD與正方形紙片ECGF,使點F在邊CD上,點M仍為AF的中點,試證明(1)中的結(jié)論仍然成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com