【題目】如圖所示,在平面直角坐標系中,一次函數(shù)y=kx+1的圖象與反比例函數(shù)y= 的圖象在第一象限相交于點A,過點A分別作x軸、y軸的垂線,垂足為點B、C,如果四邊形OBAC是正方形.
(1)求一次函數(shù)的解析式。
(2)一次函數(shù)的圖象與y軸交于點D. 在x軸上是否存在一點P,使得PA+PD最小?若存在,請求出P點坐標及最小值;若不存在,請說明理由。
【答案】(1)y=x+1;(2)(,0)
【解析】
(1)若四邊形OBAC是正方形,那么點A的橫縱坐標相等,代入反比例函數(shù)即可求得點A的坐標,進而代入一次函數(shù)即可求得未知字母k.
(2)在y軸負半軸作OD′=OD,連接AD′,與x軸的交點即為P點的坐標,進而求出P點的坐標.
(1)∵四邊形OBAC是正方形,
∴S四邊形OBAC=AB =OB=9,
∴點A的坐標為(3,3),
∵一次函數(shù)y=kx+1的圖象經(jīng)過A點,
∴3=3k+1,
解得k=,
∴一次函數(shù)的解析式y=x+1,
(2)y軸負半軸作OD′=OD,連接AD′,如圖所示,AD′與x軸的交點即為P點的坐標,
∵一次函數(shù)的解析式y=x+1,
∴D點的坐標為(0,1),
∴D′的坐標為(0,1),
∵A點坐標為(3,3),
設(shè)直線AD′的直線方程為y=mx+b,
即 ,
解得m= ,b=1,
∴直線AD′的直線方程為y=x1,
令y=0,解得x= ,
∴P點坐標為(,0)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,銳角△ABC內(nèi)接于⊙O,若⊙O的半徑為6,sinA=,求BC的長.
【答案】BC=8.
【解析】試題分析:通過作輔助線構(gòu)成直角三角形,再利用三角函數(shù)知識進行求解.
試題解析:作⊙O的直徑CD,連接BD,則CD=2×6=12.
∵
∴
∴
點睛:直徑所對的圓周角是直角.
【題型】解答題
【結(jié)束】
22
【題目】如圖,一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于A(2,m),B(n,﹣2)兩點.過點B作BC⊥x軸,垂足為C,且S△ABC=5.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請直接寫出不等式k1x+b>的解集;
(3)若P(p,y1),Q(﹣2,y2)是函數(shù)y=圖象上的兩點,且y1≥y2,求實數(shù)p的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=kx+6分別與x軸、y軸交于點E,F(xiàn),已知點E的坐標為(﹣8,0),點A的坐標為(﹣6,0).
(1)求k的值;
(2)若點P(x,y)是該直線上的一個動點,且在第二象限內(nèi)運動,試寫出△OPA的面積S關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍.
(3)探究:當點P運動到什么位置時,△OPA的面積為,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“一帶一路”國際合作高峰論壇期間,我國同30多個國家簽署經(jīng)貿(mào)合作協(xié)議.某工廠準備生產(chǎn)甲、乙兩種商品共6萬件銷往“一帶一路”沿線國家和地區(qū),已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入多1500元.
(1)甲種商品與乙種商品的銷售單價各多少元?
(2)若甲、乙兩種商品的銷售總收入不低于4200萬元,則至少銷管甲種商品多少萬件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店準備進一批季節(jié)性小家電,每個進價為40元,經(jīng)市場預測,銷售定價為50元,可售出400個;定價每增加1元,銷售量將減少10個.設(shè)每個定價增加x元.
(1)寫出售出一個可獲得的利潤是多少元(用含x的代數(shù)式表示)?
(2)商店若準備獲得利潤6000元,并且使進貨量較少,則每個定價為多少元?應進貨多少個?
(3)商店若要獲得最大利潤,則每個應定價多少元?獲得的最大利潤是多少?
【答案】(1)x+10元;(2)每個定價為70元,應進貨200個.(3)每個定價為65元時得最大利潤,可獲得的最大利潤是6250元.
【解析】試題分析:(1)根據(jù)利潤=銷售價-進價列關(guān)系式,(2)總利潤=每個的利潤×銷售量,銷售量為400-10x,列方程求解,根據(jù)題意取舍,(3)利用函數(shù)的性質(zhì)求最值.
試題解析:由題意得:(1)50+x-40=x+10(元),
(2)設(shè)每個定價增加x元,
列出方程為:(x+10)(400-10x)=6000,解得:x1=10,x2=20,要使進貨量較少,則每個定價為70元,應進貨200個,
(3)設(shè)每個定價增加x元,獲得利潤為y元,
y=(x+10)(400-10x)=-10x2+300x+4000=-10(x-15)2+6250,當x=15時,y有最大值為6250,所以每個定價為65元時得最大利潤,可獲得的最大利潤是6250元.
【題型】解答題
【結(jié)束】
24
【題目】猜想與證明:
如圖1,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點在一條直線上,CE在邊CD上,連接AF,若M為AF的中點,連接DM、ME,試猜想DM與ME的關(guān)系,并證明你的結(jié)論.
拓展與延伸:
(1)若將”猜想與證明“中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DM和ME的關(guān)系為 .
(2)如圖2擺放正方形紙片ABCD與正方形紙片ECGF,使點F在邊CD上,點M仍為AF的中點,試證明(1)中的結(jié)論仍然成立.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)5﹣(﹣2)+(﹣3)﹣(+4)
(2)(﹣﹣+)×(﹣24)
(3)(﹣3)÷××(﹣15)
(4)﹣14+|(﹣2)3﹣10|﹣(﹣3)÷(﹣1)2017.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市提倡“誦讀中華經(jīng)典,營造書香校園”的良好誦讀氛圍,促進校園文化建設(shè),進而培養(yǎng)學生的良好誦讀習慣,使經(jīng)典之風浸漫校園.某中學為了了解學生每周在校經(jīng)典誦讀時間,在本校隨機抽取了若干名學生進行調(diào)查,并依據(jù)調(diào)查結(jié)果繪制了以下不完整的統(tǒng)計圖表,請根據(jù)圖表信息解答下列問題:
時間(小時) | 頻數(shù)(人數(shù)) | 頻率 |
2≤t<3 | 4 | 0.1 |
3≤t<4 | 10 | 0.25 |
4≤t<5 | a | 0.15 |
5≤t<6 | 8 | b |
6≤t<7 | 12 | 0.3 |
合計 | 40 | 1 |
(1)表中的a= ,b= ;
(2)請將頻數(shù)分布直方圖補全;
(3)若該校共有1200名學生,試估計全校每周在校參加經(jīng)典誦讀時間至少有4小時的學生約為多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為響應綠色出行號召,越來越多市民選擇租用共享單車出行,已知某共享單車公司為市民提供了手機支付和會員卡支付兩種支付方式,如圖描述了兩種方式應支付金額y(元)與騎行時間x(時)之間的函數(shù)關(guān)系,根據(jù)圖象回答下列問題:
(1)求手機支付金額y(元)與騎行時間x(時)的函數(shù)關(guān)系式;
(2)李老師經(jīng)常騎行共享單車,請根據(jù)不同的騎行時間幫他確定選擇哪種支付方式比較合算.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com