相關(guān)習(xí)題
 0  145638  145646  145652  145656  145662  145664  145668  145674  145676  145682  145688  145692  145694  145698  145704  145706  145712  145716  145718  145722  145724  145728  145730  145732  145733  145734  145736  145737  145738  145740  145742  145746  145748  145752  145754  145758  145764  145766  145772  145776  145778  145782  145788  145794  145796  145802  145806  145808  145814  145818  145824  145832  366461 

科目: 來源:第2章《二次函數(shù)》?碱}集(19):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

一列火車自A城駛往B城,沿途有n個(gè)車站(包括起點(diǎn)站A和終點(diǎn)站B),該列火車掛有一節(jié)郵政車廂,運(yùn)行時(shí)需要在每個(gè)車站停靠,每?恳徽静粌H要卸下已經(jīng)通過的各車站發(fā)給該站的郵包一個(gè),還要裝上該站發(fā)往下面行程中每個(gè)車站的郵包一個(gè).
例如,當(dāng)列車?吭诘趚個(gè)車站時(shí),郵政車廂上需要卸下已經(jīng)通過的(x-1)個(gè)車站發(fā)給該站的郵包共(x-1)個(gè),還要裝上下面行程中要?康模╪-x)個(gè)車站的郵包共(n-x)個(gè).
(1)根據(jù)題意,完成下表:
車站序號(hào)在第x個(gè)車站起程時(shí)郵政車廂郵包總數(shù)
1n-1
2(n-1)-1+(n-2)=2(n-2)
32(n-2)-2+(n-3)=3(n-3)
4
5
n
(2)根據(jù)上表,寫出列車在第x車站啟程時(shí),郵政車廂上共有郵包的個(gè)數(shù)y(用x、n表示);
(3)當(dāng)n=18時(shí),列車在第幾個(gè)車站啟程時(shí)郵政車廂上郵包的個(gè)數(shù)最多?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(19):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

為了順應(yīng)市場要求,無為縣花炮廠技術(shù)部研制開發(fā)一種新產(chǎn)品,年初上市后,公司經(jīng)歷了從虧損到盈利的過程.下面的二次函數(shù)圖象(部分)刻畫了該廠年初以來累積利潤s(萬元)與銷售時(shí)間t(月)之間的關(guān)系(即前t個(gè)月的利潤總和s和t之間的關(guān)系).根據(jù)圖象提供的信息,解答下列問題:
(1)由已知圖象上的三點(diǎn)坐標(biāo),求累積利潤s(萬元)與時(shí)間t(月)之間的函數(shù)關(guān)系式;
(2)求截止到幾月末花炮廠累積利潤可達(dá)到30萬元;
(3)求第8個(gè)月公司所獲利潤是多少萬元?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(19):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某生物興趣小組在四天的實(shí)驗(yàn)研究中發(fā)現(xiàn):駱駝的體溫會(huì)隨外部環(huán)境溫度的變化而變化,而且在這四天中每晝夜的體溫變化情況相同,他們將一頭駱駝前兩晝夜的體溫變化情況繪制成下圖.請根據(jù)圖象回答:
(1)第一天中,在什么時(shí)間范圍內(nèi)這頭駱駝的體溫是上升的,它的體溫從最低上升到最高需要多少時(shí)間?
(2)第三天12時(shí)這頭駱駝的體溫是多少?
(3)興趣小組又在研究中發(fā)現(xiàn),圖中10時(shí)到22時(shí)的曲線是拋物線,求該拋物線的解析式.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》常考題集(19):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某農(nóng)場種植一種蔬菜,銷售員張平根據(jù)往年的銷售情況,對今年這種蔬菜的銷售價(jià)格進(jìn)行了預(yù)測,預(yù)測情況如圖,圖中的拋物線(部分)表示這種蔬菜銷售價(jià)與月份之間的關(guān)系.觀察圖象,你能得到關(guān)于這種蔬菜銷售情況的哪些信息?
答題要求:(1)請?zhí)峁┧臈l信息;
(2)不必求函數(shù)的解析式.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(19):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

有一種葡萄:從樹上摘下后不保鮮最多只能存放一周,如果放在冷藏室,可以延長保鮮時(shí)間,但每天仍有一定數(shù)量的葡萄變質(zhì),假設(shè)保鮮期內(nèi)的重量基本保持不變,現(xiàn)有一位個(gè)體戶,按市場價(jià)收購了這種葡萄200千克放在冷藏室內(nèi),此時(shí)市場價(jià)為每千克2元,據(jù)測算,此后每千克鮮葡萄的市場價(jià)格每天可以上漲0.2元,但是,存放一天需各種費(fèi)用20元,平均每天還有1千克葡萄變質(zhì)丟棄.
(1)設(shè)x天后每千克鮮葡萄的市場價(jià)為P元,寫出P關(guān)于x的函數(shù)關(guān)系式;
(2)若存放x天后將鮮葡萄一次性出售,設(shè)鮮葡萄的銷售金額為y元,寫出y關(guān)于x的函數(shù)關(guān)系式;
(3)問個(gè)體戶將這批葡萄存放多少天后出售,可獲得最大利潤,最大利潤q是多少?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(19):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,一單桿高2.2m,兩立柱之間的距離為1.6m,將一根繩子的兩端栓于立柱與鐵杠結(jié)合處,繩子自然下垂呈拋物線狀.
(1)一身高0.7m的小孩站在離立柱0.4m處,其頭部剛好觸上繩子,求繩子最低點(diǎn)到地面的距離;
(2)為供孩子們打秋千,把繩子剪斷后,中間系上一塊長為0.4米的木板,除掉系木板用去的繩子后,兩邊的繩子正好各為2米,木板與地面平行,求這時(shí)木板到地面的距離.(供選用數(shù)據(jù):≈1.8,≈1.9,≈2.1)

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(19):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某單位為響應(yīng)政府發(fā)出的全民健身的號(hào)召,打算在長和寬分別為20m和11m的矩形大廳內(nèi)修建一個(gè)60m2的矩形健身房ABCD.該健身房的四面墻壁中有兩側(cè)沿用大廳的舊墻壁(如圖為平面示意圖),已知裝修舊墻壁的費(fèi)用為20元/m2,新建(含裝修)墻壁的費(fèi)用為80元/m2.設(shè)健身房的高為3m,一面舊墻壁AB的長為xm,修建健身房墻壁的總投入為y元.
(1)求y與x的函數(shù)關(guān)系式;
(2)為了合理利用大廳,要求自變量x必須滿足條件:8≤x≤12,當(dāng)投入的資金為4800元時(shí),問利用舊墻壁的總長度為多少?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》常考題集(19):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某瓜果基地市場部為指導(dǎo)某地某種蔬菜的生產(chǎn)和銷售,在對歷年市場行情和生產(chǎn)情況進(jìn)行了調(diào)查的基礎(chǔ)上,對今年這種蔬菜上市后的市場售價(jià)和生產(chǎn)成本進(jìn)行了預(yù)測,提供了兩個(gè)方面的信息.如圖(1)(2)兩圖.
注:兩圖中的每個(gè)實(shí)心黑點(diǎn)所對應(yīng)的縱坐標(biāo)分別指相應(yīng)月份的售價(jià)和成本,生產(chǎn)成本6月份最低;圖(1)的圖象是線段,圖(2)的圖象是拋物線.
(1)在3月份出售這種蔬菜,每千克的收益(收益=售價(jià)-成本)是多少元
(2)設(shè)x月份出售這種蔬菜,每千克收益為y元,求y關(guān)于x的函數(shù)解析式;
(3)問哪個(gè)月出售這種蔬菜,每千克的收益最大?簡單說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(19):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,一位運(yùn)動(dòng)員在距籃下4米處跳起投籃,球運(yùn)行的路線是拋物線,當(dāng)球運(yùn)行的水平距離為2.5米時(shí),達(dá)到最大高度3.5米,然后準(zhǔn)確落入籃圈.已知籃圈中心到地面的距離為3.05米.
(1)建立如圖所示的直角坐標(biāo)系,求拋物線的表達(dá)式;
(2)該運(yùn)動(dòng)員身高1.8米,在這次跳投中,球在頭頂上方0.25米處出手,問:球出手時(shí),他跳離地面的高度是多少?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》常考題集(19):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某地要建造一個(gè)圓形噴水池,在水池中央垂直于水面安裝一個(gè)花形柱子OA,O恰好在水面中心,安裝在柱子頂端A處的噴頭向外噴水,水流在各個(gè)方向上沿形狀相同的拋物線路徑落下,且在過OA的任一平面上,拋物線的形狀如圖(1)和(2)所示,建立直角坐標(biāo)系,水流噴出的高度y(米)與水平距離x(米)之間的關(guān)系式是y=-x2+2x+,請回答下列問題.
(1)柱子OA的高度為多少米?
(2)噴出的水流距水平面的最大高度是多少?
(3)若不計(jì)其他因素,水池的半徑至少要多少米,才能使噴出的水流不至于落在池外?

查看答案和解析>>

同步練習(xí)冊答案