【題目】如圖,直線y=﹣x+2與反比例函數(shù)y=(k≠0)的圖象交于A(a,3),B(3,b)兩點(diǎn),過(guò)點(diǎn)AACx軸于點(diǎn)C,過(guò)點(diǎn)BBDx軸于點(diǎn)D.

(1)a,b的值及反比例函數(shù)的解析式;

(2)若點(diǎn)P在直線y=﹣x+2上,且SACP=SBDP,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);

(3)x軸正半軸上是否存在點(diǎn)M,使得△MAB為等腰三角形?若存在,請(qǐng)直接寫出M點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

【答案】(1)y;(2)P(0,2)或(-3,5);(3)M,0)或(,0).

【解析】

(1)利用點(diǎn)在直線上,將點(diǎn)的坐標(biāo)代入直線解析式中求解即可求出a,b,最后用待定系數(shù)法求出反比例函數(shù)解析式;

(2)設(shè)出點(diǎn)P坐標(biāo),用三角形的面積公式求出SACP×3×|n+1|,SBDP×1×|3n|,進(jìn)而建立方程求解即可得出結(jié)論;

(3)設(shè)出點(diǎn)M坐標(biāo),表示出MA2=(m+1)2+9,MB2=(m3)2+1,AB2=32,再三種情況建立方程求解即可得出結(jié)論.

(1)∵直線y=-x+2與反比例函數(shù)y=(k≠0)的圖象交于A(a,3),B(3,b)兩點(diǎn),∴-a+2=3,-3+2=b,

a=-1,b=-1,

A(-1,3),B(3,-1),

∵點(diǎn)A(-1,3)在反比例函數(shù)y=上,

k=-1×3=-3,

∴反比例函數(shù)解析式為y=;

(2)設(shè)點(diǎn)P(n,-n+2),

A(-1,3),

C(-1,0),

B(3,-1),

D(3,0),

SACPAC×|xPxA|=×3×|n+1|,SBDPBD×|xBxP|=×1×|3n|,

SACP=SBDP,

×3×|n+1|=×1×|3n|,

n=0n=3,

P(0,2)或(3,5);

(3)設(shè)M(m,0)(m>0),

A(1,3),B(3,1),

MA2=(m+1)2+9,MB2=(m3)2+1,AB2=(3+1)2+(13)2=32,

∵△MAB是等腰三角形,

∴①當(dāng)MA=MB時(shí),

(m+1)2+9=(m3)2+1,

m=0,(舍)

②當(dāng)MA=AB時(shí),

(m+1)2+9=32

m=1+m=1(舍),

M(1+,0)

③當(dāng)MB=AB時(shí),(m3)2+1=32,

m=3+m=3(舍),

M(3+,0)

即:滿足條件的M(1+,0)或(3+,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù)的圖像與正比例函數(shù)的圖像都經(jīng)過(guò)點(diǎn),點(diǎn)在反比例函數(shù)的圖像上,點(diǎn)在正比例函數(shù)的圖像上.

1)求此正比例函數(shù)的解析式;

2)求線段AB的長(zhǎng);

3)求PAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)、都是常數(shù),且叫做奇特函數(shù),當(dāng)時(shí),奇特函數(shù)就成為反比例函數(shù)是常數(shù),且

若矩形的兩邊長(zhǎng)分別是、,當(dāng)兩邊長(zhǎng)分別增加、后得到的新矩形的面積是,求的函數(shù)關(guān)系式,并判斷這個(gè)函數(shù)是否奇特函數(shù)”;

如圖在直角坐標(biāo)系中,點(diǎn)為原點(diǎn)矩形的頂點(diǎn),、坐標(biāo)分別為、,點(diǎn)中點(diǎn),連接、交于,“奇特函數(shù)的圖象經(jīng)過(guò)點(diǎn)、,求這個(gè)函數(shù)的解析式,并判斷、、三點(diǎn)是否在這個(gè)函數(shù)圖象上;

對(duì)于中的奇特函數(shù)的圖象,能否經(jīng)過(guò)適當(dāng)?shù)淖儞Q后與一個(gè)反比例函數(shù)圖象重合,若能,請(qǐng)直接寫出具體的變換過(guò)程和這個(gè)反比例函數(shù)解析式;若不能,請(qǐng)簡(jiǎn)述理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一個(gè)長(zhǎng)為24米的籬笆,一面利用墻(墻的最大長(zhǎng)度a15米)圍成的中間隔有一道籬笆的長(zhǎng)方形花圃.設(shè)花圃的寬ABx米,面積為S平方米.

(1)求Sx的函數(shù)關(guān)系式;

(2)如果要使圍成花圃面積最大,求AB的長(zhǎng)為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若兩條拋物線的頂點(diǎn)相同,則稱它們?yōu)?/span>友好拋物線,拋物線C1y1=﹣2x2+4x+2C2u2=﹣x2+mx+n友好拋物線

1)求拋物線C2的解析式.

2)點(diǎn)A是拋物線C2上在第一象限的動(dòng)點(diǎn),過(guò)AAQx軸,Q為垂足,求AQ+OQ的最大值.

3)設(shè)拋物線C2的頂點(diǎn)為C,點(diǎn)B的坐標(biāo)為(﹣1,4),問(wèn)在C2的對(duì)稱軸上是否存在點(diǎn)M,使線段MB繞點(diǎn)M逆時(shí)針旋轉(zhuǎn)90°得到線段MB′且點(diǎn)B′恰好落在拋物線C2上?若存在求出點(diǎn)M的坐標(biāo),不存在說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知中,厘米,厘米,點(diǎn)的中點(diǎn).

1)如果點(diǎn)P在線段BC上以3厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).

①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,是否全等,請(qǐng)說(shuō)明理由;

②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等, 是否可能全等?若能,求出全等時(shí)點(diǎn)Q的運(yùn)動(dòng)速度和時(shí)間;若不能,請(qǐng)說(shuō)明理由.

2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿三邊運(yùn)動(dòng),求經(jīng)過(guò)多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次在的哪條邊上相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2axa-2=0.

(1)求證:不論a取何實(shí)數(shù),該方程都有兩個(gè)不相等的實(shí)數(shù)根;

(2)若該方程的一個(gè)根為1,求a的值及該方程的另一根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在學(xué)習(xí)完第十二章后,張老師讓同學(xué)們獨(dú)立完成課本56頁(yè)第9題:“如圖1,,,,垂足分別為,,,求的長(zhǎng).

1)請(qǐng)你也獨(dú)立完成這道題:

2)待同學(xué)們完成這道題后,張老師又出示了一道題:

在課本原題其它條件不變的前提下,將所在直線旋轉(zhuǎn)到的外部(如圖2),請(qǐng)你猜想,,三者之間的數(shù)量關(guān)系,直接寫出結(jié)論:_______.(不需證明)

3)如圖3,將(1)中的條件改為:在中,,,三點(diǎn)在同一條直線上,并且有∠BEC=∠ADC=∠BCA=,其中為任意鈍角,那么(2)中你的猜想是否還成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(- 1,5)B(- 1,0),C(- 4,3)

1)求出△ABC的面積;

2)在圖中作出△ABC關(guān)于軸的對(duì)稱圖形△A1B1C1;

3)設(shè)Py軸上的點(diǎn),要使得點(diǎn)P到點(diǎn)AC的距離和最小,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案