【題目】將紙片沿折疊,其中.
(1)如圖1,點落在邊上的點處,與是否平行?請說明理由;
(2)如圖2,點落在四邊形內(nèi)部的點處,探索與之間的數(shù)量關(guān)系,并說明理由.
【答案】(1),理由見解析;(2),理由見解析
【解析】
(1)AB與DF平行.根據(jù)翻折可得出∠DFC=∠C,結(jié)合∠B=∠C即可得出∠B=∠DFC,從而證出AB∥DF;
(2)連接GC,由翻折可得出∠DGE=∠ACB,再根據(jù)三角形外角的性質(zhì)得出∠1=∠DGC+∠DCG,∠2=∠EGC+∠ECG,通過角的運算即可得出∠1+∠2=2∠B.
解:(1)
∵將紙片沿折疊
∴
又∵
∴
則(同位角相等,兩直線平行)
(2)連接GC,如圖.
由翻折得:∠DGE=∠ACB.
∵∠1=∠DGC+∠DCG,∠2=∠EGC+∠ECG,
∴∠1+∠2=∠DGC+∠DCG+∠EGC+∠ECG=(∠DGC+∠EGC)+(∠DCG+∠ECG)=∠DGE+∠DCE=2∠ACB.
∵∠B=∠ACB,
∴∠1+∠2=2∠B.
∴
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的對角線AC,BD相交于點O,將BD向兩個方向延長,分別至點E和點F,且使BE=DF.
(1)求證:四邊形AECF是菱形;
(2)若AC=4,BE=1,直接寫出菱形AECF的邊長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=(x>0)的圖象與一次函數(shù)y=﹣x+4的圖象交于A和B(6,n)兩點.
(1)求k和n的值;
(2)若點C(x,y)也在反比例函數(shù)y=(x>0)的圖象上,求當2≤x≤6時,函數(shù)值y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請認真觀察圖形,解答下列問題:
(1)根據(jù)圖1中條件,試用兩種不同方法表示兩個陰影圖形的面積的和.
方法1: .
方法2: .
(2)從中你能發(fā)現(xiàn)什么結(jié)論?請用等式表示出來: .
(3)利用(2)中結(jié)論解決下面的問題:如圖2,兩個正方形邊長分別為a、b,如果a+b=10,ab=21,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是菱形ABCD邊上的一動點,它從點A出發(fā)沿在A→B→C→D路徑勻速運動到點D,設(shè)△PAD的面積為y,P點的運動時間為x,則y關(guān)于x的函數(shù)圖象大致為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》是我國東漢初年編訂的一部數(shù)學經(jīng)典著作.在它的“方程”一章里,一次方程組是由算籌布置而成的.《九章算術(shù)》中的算籌圖是豎排的,現(xiàn)在我們把它改為橫排,如圖1、圖2,圖中各行從左到右列出的算籌數(shù)分別表示未知數(shù)的系數(shù)與相應(yīng)的常數(shù)項,把圖1所示的算籌圖用我們現(xiàn)在所熟悉的方程組形式表述出來就是 類似地,圖2所示的算籌圖我們可以用方程組形式表述為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,,.
求證:
證明:因為(已知)
所以(_______)
所以__________.(兩直線平行,內(nèi)錯角相等)
因為.(已知)
所以__________.(_______)
所以.(_______)
所以.(等式性質(zhì)1)
即.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD的對角線AC、BD相交于點O,AE平分∠BAD,分別交BC、BD于點E、P,連接OE,∠ADC=60°,AB=BC=1,則下列結(jié)論:
①∠CAD=30°②BD=③S平行四邊形ABCD=ABAC④OE=AD⑤S△APO=,正確的個數(shù)是( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形ABCD的邊AB在x軸上,點B坐標(﹣3,0),點C在y軸正半軸上,且sin∠CBO=,點P從原點O出發(fā),以每秒一個單位長度的速度沿x軸正方向移動,移動時間為t(0≤t≤5)秒,過點P作平行于y軸的直線l,直線l掃過四邊形OCDA的面積為S.
(1)求點D坐標.
(2)求S關(guān)于t的函數(shù)關(guān)系式.
(3)在直線l移動過程中,l上是否存在一點Q,使以B、C、Q為頂點的三角形是等腰直角三角形?若存在,直接寫出Q點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com