【題目】尺規(guī)作圖:
已知:∠AOB.
求作:射線(xiàn)OC,使它平分∠AOB.
作法:
(1)以O為圓心,任意長(zhǎng)為半徑作弧,交OA于D,交OB于E;
(2)分別以D、E為圓心,大于DE的同樣長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)C;
(3)作射線(xiàn)OC.
所以射線(xiàn)OC就是所求作的射線(xiàn).
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:連結(jié)CE,CD.
∵OE=OD, = ,OC=OC,
∴△OEC≌△ODC(依據(jù): ),
∴∠EOC=∠DOC,
即OC平分∠AOB.
【答案】(1)見(jiàn)解析;(2)CE= CD;SSS.
【解析】
(1)根據(jù)已知步驟畫(huà)圖即可.
(2)根據(jù)SSS證明三角形全等的步驟即可解答.
(1)如圖所示:
(2)CE= CD;SSS.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)A(x1,y1)、B(x2,y2)都在某函數(shù)圖象上,且當(dāng)x1<x2<0時(shí),y1>y2,則此函數(shù)一定不是( 。
A. B. y=﹣2x+1 C. y=x2﹣1 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)y=﹣x2+bx+c與一直線(xiàn)相交于A(1,0)、C(﹣2,3)兩點(diǎn),與y軸交于點(diǎn)N,其頂點(diǎn)為D.
(1)求拋物線(xiàn)及直線(xiàn)AC的函數(shù)關(guān)系式;
(2)若P是拋物線(xiàn)上位于直線(xiàn)AC上方的一個(gè)動(dòng)點(diǎn),求△APC的面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)在對(duì)稱(chēng)軸上是否存在一點(diǎn)M,使△ANM的周長(zhǎng)最。舸嬖,請(qǐng)求出M點(diǎn)的坐標(biāo)和△ANM周長(zhǎng)的最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,將兩個(gè)完全相同的三角形紙片ABC和DEC重合放置,其中∠C=900,∠B=∠E=300.
(1)操作發(fā)現(xiàn)如圖2,固定△ABC,使△DEC繞點(diǎn)C旋轉(zhuǎn)。當(dāng)點(diǎn)D恰好落在BC邊上時(shí),填空:線(xiàn)段DE與AC的位置關(guān)系是 ;
② 設(shè)△BDC的面積為S1,△AEC的面積為S2。則S1與S2的數(shù)量關(guān)系是 。
(2)猜想論證
當(dāng)△DEC繞點(diǎn)C旋轉(zhuǎn)到圖3所示的位置時(shí),小明猜想(1)中S1與S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請(qǐng)你證明小明的猜想。
(3)拓展探究
已知∠ABC=600,點(diǎn)D是其角平分線(xiàn)上一點(diǎn),BD=CD=4,OE∥AB交BC于點(diǎn)E(如圖4),若在射線(xiàn)BA上存在點(diǎn)F,使S△DCF =S△BDC,請(qǐng)直接寫(xiě)出相應(yīng)的BF的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題提出
(1)如圖①,在△ABC中,∠A=120°,AB=AC=5,則△ABC的外接圓半徑R的值為 .
問(wèn)題探究
(2)如圖②,⊙O的半徑為13,弦AB=24,M是AB的中點(diǎn),P是⊙O上一動(dòng)點(diǎn),求PM的最大值.
問(wèn)題解決
(3)如圖③所示,AB、AC、BC是某新區(qū)的三條規(guī)劃路其中,AB=6km,AC=3km,∠BAC=60°,BC所對(duì)的圓心角為60°.新區(qū)管委會(huì)想在BC路邊建物資總站點(diǎn)P,在AB、AC路邊分別建物資分站點(diǎn)E、F.也就是,分別在、線(xiàn)段AB和AC上選取點(diǎn)P、E、F.由于總站工作人員每天要將物資在各物資站點(diǎn)間按P→E→F→P的路徑進(jìn)行運(yùn)輸,因此,要在各物資站點(diǎn)之間規(guī)劃道路PE、EF和FP.為了快捷環(huán)保和節(jié)約成本要使得線(xiàn)段PE、EF、FP之和最短,試求PE+EF+FP的最小值(各物資站點(diǎn)與所在道路之間的距離、路寬均忽略不計(jì)).
圖① 圖② 圖③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某園林專(zhuān)業(yè)戶(hù)計(jì)劃投資種植花卉及樹(shù)木,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),種植樹(shù)木的利潤(rùn)與投資金額成正比例關(guān)系,如圖1所示;種植花卉的利潤(rùn)與投資金額成二次函數(shù)關(guān)系,如圖2所示.(注:利潤(rùn)與投資金額的單位均為萬(wàn)元)
(1)分別求出利潤(rùn)與關(guān)于投資金額的函數(shù)關(guān)系;
(2)如果這位專(zhuān)業(yè)戶(hù)以8萬(wàn)元資金投入種植花卉和樹(shù)木,設(shè)他投入種植花卉的金額是萬(wàn)元,求這位專(zhuān)業(yè)戶(hù)能獲取的最大總利潤(rùn)是多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為邊BC的中點(diǎn),四邊形ABDE是平行四邊形,AC,DE相交于點(diǎn)O.
(1)求證:四邊形ADCE是矩形;
(2)若∠AOE=60°,AE=2,求矩形ADCE對(duì)角線(xiàn)的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知正方形ABCO,A(0,3),點(diǎn)D為x軸上一動(dòng)點(diǎn),以AD為邊在AD的右側(cè)作等腰Rt△ADE,∠ADE=90°,連接OE,則OE的最小值為( )
A. B. C. 2D. 3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com