【題目】如圖,直線y=kx+c與拋物線y=ax2+bx+c的圖象都經過y軸上的D點,拋物線與x軸交于A、B兩點,其對稱軸為直線x=1,且OA=OD.直線y=kx+c與x軸交于點C(點C在點B的右側).則下列命題中正確命題的是( )
①abc>0; ②3a+b>0; ③﹣1<k<0; ④4a+2b+c<0; ⑤a+b<k.
A. ①②③ B. ②③⑤
C. ②④⑤ D. ②③④⑤
【答案】B
【解析】試題解析:∵拋物線開口向上,
∴a>0.
∵拋物線對稱軸是x=1,
∴b<0且b=-2a.
∵拋物線與y軸交于正半軸,
∴c>0.
∴①abc>0錯誤;
∵b=-2a,
∴3a+b=3a-2a=a>0,
∴②3a+b>0正確;
∵b=-2a,
∴4a+2b+c=4a-4a+c=c>0,
∴④4a+2b+c<0錯誤;
∵直線y=kx+c經過一、二、四象限,
∴k<0.
∵OA=OD,
∴點A的坐標為(c,0).
直線y=kx+c當x=c時,y>0,
∴kc+c>0可得k>-1.
∴③-1<k<0正確;
∵直線y=kx+c與拋物線y=ax2+bx+c的圖象有兩個交點,
∴ax2+bx+c=kx+c,
得x1=0,x2=
由圖象知x2>1,
∴>1
∴k>a+b,
∴⑤a+b<k正確,
即正確命題的是②③⑤.
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,點C是中點,∠COB=60°,過點C作CE⊥AD,交AD的延長線于點E
(1)求證:CE為⊙O的切線;
(2)判斷四邊形AOCD是否為菱形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=-x2+x+4.
(1)確定拋物線的開口方向、頂點坐標和對稱軸;
(2)當x取何值時,y隨x的增大而增大?當x取何值時,y隨x的增大而減小?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1的正方形組成的網格中,△AOB的頂點均在格點上,其中點A(5,4),B(1,3),將△AOB繞點O逆時針旋轉90°后得到△A1OB1.
(1)畫出△A1OB1;
(2)在旋轉過程中點B所經過的路徑長為 ;
(3)求在旋轉過程中線段AB、BO掃過的圖形的面積之和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知拋物線經過A(﹣4,0),B(0,﹣4),C(2,0)三點.
(1)求拋物線的解析式;
(2)若點M為第三象限內拋物線上一動點,點M的橫坐標為m,△AMB的面積為S.求S關于m的函數(shù)關系式,并求出S的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將一塊腰長為的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標軸上,直角頂點C的坐標為(,0),點B在拋物線上.
(1)點A的坐標為 ,點B的坐標為 ;
(2)拋物線的解析式為 ;
(3)設(2)中拋物線的頂點為D,求△DBC的面積;
(4)在拋物線上是否還存在點P(點B除外),使ΔACP仍然是以AC為直角邊的等腰直角三角形?若存在,請直接寫出所有點P的坐標;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com