【題目】已知矩形的一條邊,將矩形折疊,使得頂點落在邊上的點處. 如圖,已知折痕與邊交于點,連結.

1)求證:

2)若,求邊的長.

【答案】1)見解析;(2.

【解析】

1)根據(jù)矩形及折疊的性質(zhì)可得出∠APO∠B90°,∠C∠D90°,由同角的余角相等可得出∠DAP∠CPO,結合∠C∠D90°即可證出△OCP∽△PDA
2)根據(jù)折疊的性質(zhì)可得出,由相似三角形的性質(zhì)可得出,結合AD8可得出CP4,設BOx,則CO8x,PD2(8x),由ABCD,即可得出關于x的一元一次方程,解之即可得出x的值,將其代入AB2x中即可求出結論.

1)證明:四邊形為矩形,

.

由折疊,可知:,

.

,

;

2)由折疊,可知:,

.

,

,

.

,則

,

解得:,

.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了保證端午節(jié)龍舟賽在我市僑港海域順利舉辦,某部門工作人員乘快艇到僑港海域考察水情,以每秒11米的速度沿平行于岸邊的賽道AB由西向東行駛,在A處測得岸邊一建筑物P在北偏東30°方向上,繼續(xù)行駛40秒到達B處時,測得建筑物P在北偏西60°方向上,如圖所示,求建筑物P到賽道AB的距離(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】周末,小明騎自行車從家里出發(fā)到野外郊游.從家出發(fā)0.5小時后到達甲地,游玩一段時間后按原速前往乙地.小明離家1小時20分鐘后,媽媽駕車沿相同路線前往乙地,如圖是他們離家的路程ykm)與小明離家時間xh)的函數(shù)圖象.已知媽媽駕車的速度是小明騎車速度的3倍.

1)求小明騎車的速度和在甲地游玩的時間;

2)小明從家出發(fā)多少小時后被媽媽追上?此時離家多遠?

3)若媽媽比小明早10分鐘到達乙地,求從家到乙地的路程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+bx+cx軸交于A(-1,0),B(3,0)兩點。

1)求b、c的值;

2P為拋物線上的點,且滿足SPAB=8,求P點的坐標

3)設拋物線交y軸于C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最小?若存在,求出Q點的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸于A,B兩點,交y軸于點C.直線經(jīng)過點A,C

1)求拋物線的解析式;

2)點P是拋物線上一動點,過點Px軸的垂線,交直線AC于點M,設點P的橫坐標為m

①當是直角三角形時,求點P的坐標;

②作點B關于點C的對稱點,則平面內(nèi)存在直線l,使點MB,到該直線的距離都相等.當點Py軸右側的拋物線上,且與點B不重合時,請直接寫出直線的解析式.(k,b可用含m的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,是⊙O內(nèi)接等邊三角形,直線MN與⊙O相切于A點,P是弧BC的中點,則.

1)如圖2,正方形ABCD是⊙O內(nèi)接正方形,直線MN與⊙O相切于A點,P是弧BC的中點,則________;

2)如圖3,若正n邊形ABC……PQ是⊙O內(nèi)接正n邊形,直線MN與⊙O相切于A點,P是弧BC的中點,若的度數(shù)小于,則n的最小值是_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠C90°,∠B60°,在AC邊上取點O畫圓,使⊙O經(jīng)過AB兩點,下列結論中:①AOBC;②AO2CO;③延長BC交⊙OD,則A、B、D是⊙O的三等分點;④以O為圓心,以OC為半徑的圓與AB相切.正確的序號是______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形木框ABCD中,AB2AD4,將其按順時針變形為ABCD,當∠ADB90°時,四邊形對稱中心O經(jīng)過的路徑長為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線ymx24mx+2m+1x軸交于Ax1,0),Bx2,0)兩點,與y軸交于點C,且x2x12

1)求拋物線的解析式;

2E是拋物線上一點,∠EAB2OCA,求點E的坐標;

3)設拋物線的頂點為D,動點P從點B出發(fā),沿拋物線向上運動,連接PD,過點PPQPD,交拋物線的對稱軸于點Q,以QD為對角線作矩形PQMD,當點P運動至點(5,t)時,求線段DM掃過的圖形面積.

查看答案和解析>>

同步練習冊答案