【題目】某游泳館普通票價30元張,暑假為了促銷,新推出一種優(yōu)惠卡:售價300元張,每次憑卡另收15元暑假普通票正常出售,優(yōu)惠卡僅限暑假使用,不限次數(shù)設游泳x次時,所需總費用為y元.
分別寫出選擇優(yōu)惠卡、普通票消費時,y與x之間的函數(shù)關系式;
在同一坐標系中,若兩種消費方式對應的函數(shù)圖象如圖所示,請求出點A、B的坐標;
【答案】(1) y=300+15x ,y=30x ;(2) A(0,300),B(20,600).
【解析】
根據(jù)題意可以分別寫出選擇優(yōu)惠卡、普通票消費時,y與x之間的函數(shù)關系式;
根據(jù)題意可知,點A的坐標就是選擇優(yōu)惠卡時對應的函數(shù)解析式與y軸的交點,點B的坐標就是兩個函數(shù)交點的坐標,本題得以解決.
解:由題意可得,
選擇優(yōu)惠卡時,y與x的函數(shù)關系式為:,
當選擇普通票時,y與x的函數(shù)關系式為:;
將代入,得,即點A的坐標為,
令,得,則,即點B的坐標為,
由上可得,點A的坐標為,點B的坐標為.
故答案為:(1) y=300+15x,y=30x ;(2) A(0,300),B(20,600).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC,則下列結論:①AD=BC;②∠ACE=∠ABC;③∠ECD+∠EBC=∠BEC;④∠CEF=∠CFE.其中正的是( )
A. ①②B. ①③④C. ①②④D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32,連接BD,AE⊥BD,垂足為E.
(1)求證:△ABE∽△DBC;
(2)求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC 中,AD 是∠BAC 的平分線,且 AD=AB,過點 C 作 AD 的垂線,交 AD 的延長線于點 H.
(1)如圖 1,若∠BAC=60°.
①直接寫出∠B 和∠ACB 的度數(shù);
②若 AB=2,求 AC 和 AH 的長;
(2)如圖 2,用等式表示線段 AH 與 AB+AC 之間的數(shù)量關系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P為平行四邊形ABCD邊AD上一點,E、F分別為PB、PC的中點,△PEF、△PDC、△PAB的面積分別為S、S1、S2,若S=2,則S1+S2=( )
A. 4 B. 6 C. 8 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料解決問題:
材料:古希臘著名數(shù)學家 畢達哥拉斯發(fā)現(xiàn)把數(shù)1,3,6,10,15,21…這些數(shù)量的(石子),都可以排成三角形,則稱像這樣的數(shù)為三角形數(shù).
把數(shù) 1,3,6,10,15,21…換一種方式排列,即
1=1
1+2=3
1+2+3=6
1+2+3+4=10
1+2+3+4+5=15
…
從上面的排列方式看,把1,3,6,10,15,…叫做三角形數(shù)“名副其實”.
(1)設第一個三角形數(shù)為a1=1,第二個三角形數(shù)為a2=3,第三個三角形數(shù)為a3=6,請直接寫出第n個三角形數(shù)為an的表達式(其中n為正整數(shù)).
(2)根據(jù)(1)的結論判斷66是三角形數(shù)嗎?若是請說出66是第幾個三角形數(shù)?若不是請說明理由.
(3)根據(jù)(1)的結論判斷所有三角形數(shù)的倒數(shù)之和T與2的大小關系并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩個大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,B,C,E在同一條直線上,連結DC.
(1)請猜想:DC與BE的數(shù)量關系,并給予證明;
(2)求證:DC⊥BE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】水果種植大戶小方,為了吸引更多的顧客,組織了觀光采摘游活動.每一位來采摘水果的顧客都有一次抽獎機會:在一只不透明的盒子里有A,B,C,D四張外形完全相同的卡片,抽獎時先隨機抽出一張卡片,再從盒子中剩下的3張中隨機抽取第二張.
(1)請利用樹狀圖(或列表)的方法,表示前后兩次抽得的卡片所有可能的情況;
(2)如果抽得的兩張卡片是同一種水果圖片就可獲得獎勵,那么得到獎勵的概率是多少?
A B C D
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com