【題目】小明練習(xí)跳繩,以1分鐘跳165個為目標(biāo),并把20次1分鐘跳繩的數(shù)記錄如表(超過165個的部分記為“+”,少于165個的部分記為“-”)
與目標(biāo)數(shù)量的差值 (單位:個) | -12 | -6 | -2 | +5 | +11 |
次數(shù) | 3 | 5 | 4 | 6 | 2 |
(1)小明在這20次跳繩練習(xí)中,1分鐘最多跳個?
(2)小明在這20次跳繩練習(xí)中,1分鐘跳繩個數(shù)最多的一次比最少的一次多個?
(3)小明在這20次跳繩練習(xí)中,累計跳繩多少個?
【答案】(1)176個;(2)23個;(3)3278個.
【解析】
(1)找到記錄表中“+”中數(shù)值最大,再加上目標(biāo)值165個即可;
(2)找到記錄表中“+”中數(shù)值最大和“-”中絕對值最大的,兩者作差即可;
(3)將記錄表中的每個差值乘以對應(yīng)的次數(shù),再求和,最后再加上20次的目標(biāo)總數(shù)量,即可得出答案.
(1)直接觀察記錄表可知,1分鐘跳的最多的是“+11”
其對應(yīng)的個數(shù)為:(個)
答:小明在這20次跳繩練習(xí)中,1分鐘最多跳176個;
(2)記錄表中跳的最多的是“+11”,最少的是“-12”
則所求的個數(shù)為:(個)
答:小明在這20次跳繩練習(xí)中,1分鐘跳繩個數(shù)最多的一次比最少的一次多23個;
(3)小明20次跳繩的數(shù)與目標(biāo)總數(shù)量的總差值為:
(個)
則小明在這20次跳繩練習(xí)中,累計跳繩個數(shù)為:(個)
答:小明在這20次跳繩練習(xí)中,累計跳繩3278個.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,CD⊥AB于點D,BD=9,BC=15,AC=20.
(1)求CD的長;
(2)求AB的長;
(3)判斷△ABC的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某區(qū)初二年級數(shù)學(xué)學(xué)科期末質(zhì)量監(jiān)控情況,進行了抽樣調(diào)查,過程如下,請將有關(guān)問題補充完整.
收集數(shù)據(jù):隨機抽取甲乙兩所學(xué)校的20名學(xué)生的數(shù)學(xué)成績進行分析:
甲 | 91 | 89 | 77 | 86 | 71 | 31 | 97 | 93 | 72 | 91 |
81 | 92 | 85 | 85 | 95 | 88 | 88 | 90 | 44 | 91 | |
乙 | 84 | 93 | 66 | 69 | 76 | 87 | 77 | 82 | 85 | 88 |
90 | 88 | 67 | 88 | 91 | 96 | 68 | 97 | 59 | 88 |
整理、描述數(shù)據(jù):按如下數(shù)據(jù)段整理、描述這兩組數(shù)據(jù)
分段 學(xué)校 | 30≤x≤39 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 1 | 1 | 0 | 0 | 3 | 7 | 8 |
乙 |
|
|
|
|
|
|
|
分析數(shù)據(jù):兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表:
統(tǒng)計量 學(xué)校 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 81.85 | 88 | 91 | 268.43 |
乙 | 81.95 | 86 | m | 115.25 |
經(jīng)統(tǒng)計,表格中m的值是 .
得出結(jié)論:
a若甲學(xué)校有400名初二學(xué)生,估計這次考試成績80分以上人數(shù)為 .
b可以推斷出 學(xué)校學(xué)生的數(shù)學(xué)水平較高,理由為 .(至少從兩個不同的角度說明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點M的坐標(biāo)為,點N的坐標(biāo)為,且,,以MN為邊構(gòu)造菱形,若該菱形的兩條對角線分別平行于x軸,y軸,則稱該菱形為邊的“坐標(biāo)菱形”.
(1)已知點A(2,0),B(0,2),則以AB為邊的“坐標(biāo)菱形”的最小內(nèi)角為_______;
(2)若點C(1,2),點D在直線y=5上,以CD為邊的“坐標(biāo)菱形”為正方形,求直線CD 表達式;
(3)⊙O的半徑為,點P的坐標(biāo)為(3,m) .若在⊙O上存在一點Q,使得以QP為邊的“坐標(biāo)菱形”為正方形,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一條數(shù)軸在原點O和點B處各折一下,得到一條“折線數(shù)軸”.圖中點A表示﹣11,點B表示10,點C表示18,我們稱點A和點C在數(shù)軸上相距29個長度單位.動點P從點A出發(fā),以2單位/秒的速度沿著“折線數(shù)軸”的正方向運動,從點O運動到點B期間速度變?yōu)樵瓉淼囊话耄罅⒖袒謴?fù)原速;同時,動點Q從點C出發(fā),以1單位/秒的速度沿著數(shù)軸的負方向運動,從點B運動到點O期間速度變?yōu)樵瓉淼膬杀叮笠擦⒖袒謴?fù)原速.設(shè)運動的時間為t秒.
問:(1)動點P從點A運動至C點需要多少時間?
(2)P、Q兩點相遇時,求出相遇點M所對應(yīng)的數(shù)是多少;
(3)求當(dāng)t為何值時,P、O兩點在數(shù)軸上相距的長度與Q、B兩點在數(shù)軸上相距的長度相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在密碼學(xué)中,直接可以看到內(nèi)容為明碼,對明碼進行某種處理后得到的內(nèi)容為密碼、有一種密碼,將英文26個字母a,b,c…,z(不論大小寫)依次對應(yīng)1,2,3,…,26這26個自然數(shù).當(dāng)明碼字母對應(yīng)的序號x為奇數(shù)時,密碼字母對應(yīng)的序號是;當(dāng)明碼字母對應(yīng)的序號x為偶數(shù)時,密碼字母對應(yīng)的序號是+14.按上述規(guī)定,將明碼“hope”譯成密碼是( )
字母 | a | b | c | d | e | f | g | h | i | j | k | l | m |
序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
字母 | n | o | p | q | r | s | t | u | v | w | x | y | z |
序號 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
A.gawqB.rivdC.giheD.hope
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,且DE∥AB,過點E作EF⊥DE,交BC的延長線于點F.
(1)求∠F的度數(shù);
(2)若CD=2,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖表示一個正比例函數(shù)與一個一次函數(shù)的圖象,它們交于點A(4,3),一次函數(shù)的圖象與y軸交于點B,且OA=OB.
(1)求這兩個函數(shù)的解析式;
(2)求△OAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)分別為A(2,4),B(3,2),C(6,3).
(1)畫出△ABC關(guān)于x軸對稱的△ABC;
(2)以M點為位似中心,在網(wǎng)格中畫出△ABC的位似圖形△ABC,使△A2B2C2與△ABC的相似比為2:1.
(3)請寫出(2)中放大后的△ABC中AB邊的中點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com