【題目】如圖,正方形ABCD的邊AB在數(shù)軸上,數(shù)軸上點(diǎn)A表示的數(shù)為﹣1,正方形ABCD的面積為16

1)數(shù)軸上點(diǎn)B表示的數(shù)為   ;

2)將正方形ABCD沿?cái)?shù)軸水平移動(dòng),移動(dòng)后的正方形記為A′B′C′D′,移動(dòng)后的正方形A′B′C′D′與原正方形ABCD重疊部分的面積為S

①當(dāng)S=4時(shí),畫(huà)出圖形,并求出數(shù)軸上點(diǎn)A′表示的數(shù);

②設(shè)正方形ABCD的移動(dòng)速度為每秒2個(gè)單位長(zhǎng)度,點(diǎn)E為線段AA′的中點(diǎn),點(diǎn)F在線段BB′上,且BF=BB′.經(jīng)過(guò)t秒后,點(diǎn)E,F所表示的數(shù)互為相反數(shù),直接寫(xiě)出t的值.

【答案】(1)-5;(2)①點(diǎn)A'表示的數(shù)為﹣42;t=4

【解析】試題分析:(1)利用正方形ABCD的面積為16,可得AB長(zhǎng),再根據(jù)AO=1,進(jìn)而可得點(diǎn)B表示的數(shù);

(2)①先根據(jù)正方形的面積為16可得邊長(zhǎng)為4,當(dāng)S=4時(shí),分兩種情況:正方形ABCD向左平移,正方形ABCD向右平移,分別求出數(shù)軸上點(diǎn)A′表示的數(shù);

②當(dāng)正方形ABCD延數(shù)軸負(fù)方向運(yùn)動(dòng)時(shí),點(diǎn)E、F表示的數(shù)均為負(fù)數(shù),不可能互為相反數(shù),不符合題意;當(dāng)點(diǎn)E、F所表示的數(shù)互為相反數(shù)時(shí),正方形ABCD延數(shù)軸正方向運(yùn)動(dòng),再根據(jù)點(diǎn)E、F所表示的數(shù)互為相反數(shù),列出方程即可求出t的值.

試題解析:1∵正方形ABCD的面積為16,

AB=4

∵點(diǎn)A表示的數(shù)為﹣1,

AO=1

BO=5,

∴數(shù)軸上點(diǎn)B表示的數(shù)為﹣5,

故答案為:﹣5

2①∵正方形的面積為16,

∴邊長(zhǎng)為4

當(dāng)S=4時(shí),分兩種情況:

若正方形ABCD向左平移,如圖1,

A'B=4÷4=1,

AA'=4﹣1=3

∴點(diǎn)A'表示的數(shù)為﹣1﹣3=﹣4;

若正方形ABCD向右平移,如圖2

AB'=4÷4=1,

AA'=4﹣1=3,

∴點(diǎn)A'表示的數(shù)為﹣1+3=2;

綜上所述,點(diǎn)A'表示的數(shù)為﹣42;

t的值為4

理由如下:

當(dāng)正方形ABCD沿?cái)?shù)軸負(fù)方向運(yùn)動(dòng)時(shí),點(diǎn)E,F表示的數(shù)均為負(fù)數(shù),不可能互為相反數(shù),不符合題意;

當(dāng)點(diǎn)E,F所表示的數(shù)互為相反數(shù)時(shí),正方形ABCD沿?cái)?shù)軸正方向運(yùn)動(dòng),如圖3

AE=AA'=×2t=t,點(diǎn)A表示﹣1,

∴點(diǎn)E表示的數(shù)為﹣1+t,

BF=BB′=×2t=t,點(diǎn)B表示﹣5

∴點(diǎn)F表示的數(shù)為﹣5+t,

∵點(diǎn)E,F所表示的數(shù)互為相反數(shù),

﹣1+t+﹣5+t=0,

解得t=4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次尋寶游戲中,已知尋寶圖上兩標(biāo)志點(diǎn)A和點(diǎn)B的坐標(biāo)分別為(-3,0),(5,0),“寶藏分別埋在C(3,4)D(-2,3)兩點(diǎn).

(1)請(qǐng)建立平面直角坐標(biāo)系,并確定寶藏的位置;

(2)計(jì)算四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】人們?cè)陂L(zhǎng)期的數(shù)學(xué)實(shí)踐中總結(jié)了許多解決數(shù)學(xué)問(wèn)題的方法,形成了許多光輝的數(shù)學(xué)想法,其中轉(zhuǎn)化思想是中學(xué)教學(xué)中最活躍,最實(shí)用,也是最重要的數(shù)學(xué)思想,例如將不規(guī)則圖形轉(zhuǎn)化為規(guī)則圖形就是研究圖形問(wèn)題比較常用的一種方法。

問(wèn)題提出:求邊長(zhǎng)分別為的三角形面積。

問(wèn)題解決:在解答這個(gè)問(wèn)題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫(huà)出邊長(zhǎng)分別為的格點(diǎn)三角形ABC(如圖①),AB=是直角邊為12的直角三角形斜邊,BC=是直角邊分別為13的直角三角形的斜邊,AC=是直角邊分別為23 的直角三角形斜邊,用一個(gè)大長(zhǎng)方形的面積減去三個(gè)直角三角形的面積,這樣不需求ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積。

(1)請(qǐng)直接寫(xiě)出圖①中ABC的面積為_______________ 。

(2)類比遷移:求邊長(zhǎng)分別為的三角形面積(請(qǐng)利用圖②的正方形網(wǎng)格畫(huà)出相應(yīng)的ABC,并求出它的面積)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,對(duì)于任意兩點(diǎn)A(x1,y1)B (x2,y2),規(guī)定運(yùn)算:

(1)A⊕B=(x1+x2,y1+y2);

(2)A⊙B=x1x2+y1y2;

(3)當(dāng)x1=x2且y1=y2時(shí),A=B.

有下列四個(gè)命題:

①若有A(1,2),B(2,﹣1),則A⊕B=(3,1),A⊙B=0;

②若有A⊕B=B⊕C,則A=C;

③若有A⊙B=B⊙C,則A=C;

④(A⊕B)⊕C=A⊕(B⊕C)對(duì)任意點(diǎn)A、B、C均成立.

其中正確的命題為______(只填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】利用我們學(xué)過(guò)的知識(shí)可以導(dǎo)出下面這個(gè)形式優(yōu)美的等式

a2b2c2abbcac [(ab)2(bc)2(ca)2],

該等式從左到右的變形,不僅保持了結(jié)構(gòu)的對(duì)稱性,還體現(xiàn)了數(shù)學(xué)的和諧、簡(jiǎn)潔美

(1)請(qǐng)你檢驗(yàn)這個(gè)等式的正確性

(2)a2 016,b2 017,c2 018,你能很快求出a2b2c2abbcac的值嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列7個(gè)事件中:(1)擲一枚硬幣,正面朝上.(2)從一副沒(méi)有大小王的撲克牌中抽出一張恰為黑桃.(3)隨意翻開(kāi)一本有400頁(yè)的書(shū),正好翻到第100頁(yè).(4)天上下雨,馬路潮濕.(5)你能長(zhǎng)到身高4.(6)買(mǎi)獎(jiǎng)券中特等大獎(jiǎng).(7)擲一枚正方體骰子,得到的點(diǎn)數(shù)<7.其中(將序號(hào)填入題中的橫線上即可)確定事件為________;不確定事件為________;不可能事件為________;必然事件為________;不確定事件中,發(fā)生可能性最大的是________,發(fā)生可能性最小的是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),AOB45°,點(diǎn)PQ分別是邊OAOB上的兩點(diǎn),且OP2cm.將O沿PQ折疊,點(diǎn)O落在平面內(nèi)點(diǎn)C.

1當(dāng)PCQB時(shí),OQ ;

當(dāng)PCQB時(shí),求OQ的長(zhǎng).

2)當(dāng)折疊后重疊部分為等腰三角形時(shí),求OQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一坐標(biāo)系中,一次函數(shù)y=﹣mx+n2與二次函數(shù)y=x2+m的圖象可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的對(duì)角線相交于點(diǎn)O,CAB的平分線分別交BDBCEF,作BHAF于點(diǎn)H,分別交AC、CD于點(diǎn)G、P,連結(jié)GEGF

1)求證:OAE≌△OBG

2)試問(wèn):四邊形BFGE是否為菱形?若是,請(qǐng)證明;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案