【題目】媽媽做了一份美味可口的菜品,為了了解菜品的咸淡是否適合,于是媽媽取了一點(diǎn)品嘗,屬于_________________ (填普查抽樣調(diào)查)。

【答案】樣本沒(méi)有代表性

【解析】試題分析:根據(jù)普查和抽樣調(diào)查的定義,顯然此題屬于抽樣調(diào)查.

解:由于只是取了一點(diǎn)品嘗,所以應(yīng)該是抽樣調(diào)查.

故答案為:抽樣調(diào)查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A2,2,B4,0,C4,4

1請(qǐng)畫出ABC向左平移6個(gè)單位長(zhǎng)度后得到的A1B1C1;

2以點(diǎn)O為位似中心,將ABC縮小為原來(lái)的,得到A2B2C2,請(qǐng)?jiān)趛軸右側(cè)畫出A2B2C2,并求出A2C2B2的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一張直角三角形ABC紙片沿斜邊AB上的中線CD剪開,得到△ACD,再將△ACD沿DB方向平移到△A′C′D′的位置,若平移開始后點(diǎn)D′未到達(dá)點(diǎn)B時(shí),A′C′CDE,D′C′CB于點(diǎn)F,連接EF,當(dāng)四邊形EDD′F為菱形時(shí),試探究△A′DE的形狀,并判斷△A′DE△EFC′是否全等?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩人各拋一枚硬幣,則下面說(shuō)法正確的是( )

A. 每次拋出后出現(xiàn)正面或反面是一樣的

B. 拋擲同樣的次數(shù),則出現(xiàn)正、反面的頻數(shù)一樣多

C. 在相同條件下,即使拋擲的次數(shù)很多,出現(xiàn)正、反面的頻數(shù)也不一定相同

D. 當(dāng)拋擲次數(shù)很多時(shí),出現(xiàn)正、反面的次數(shù)就相同了

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若正多邊形的一個(gè)外角為60,則這個(gè)正多邊形的中心角的度數(shù)是( )

A. 30° B. 60° C. 90° D. 120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x>yxy<0,a為任意有理數(shù),下列式子中一定正確的是( )

A. -x>y B. a2x>a2y C. -x+a<-y+a D. x>-y

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=x2+(2m+1)x+m(m﹣3)(m為常數(shù),﹣1≤m≤4).A(﹣m﹣1,y1),B(,y2),C(﹣m,y3)是該拋物線上不同的三點(diǎn),現(xiàn)將拋物線的對(duì)稱軸繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到直線a,過(guò)拋物線頂點(diǎn)P作PH⊥a于H.

(1)用含m的代數(shù)式表示拋物線的頂點(diǎn)坐標(biāo);

(2)若無(wú)論m取何值,拋物線與直線y=x﹣km(k為常數(shù))有且僅有一個(gè)公共點(diǎn),求k的值;

(3)當(dāng)1<PH≤6時(shí),試比較y1,y2,y3之間的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)正多邊形的內(nèi)角和為720°,則這個(gè)正多邊形的每一個(gè)外角等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

小明遇到這樣一個(gè)問(wèn)題:如圖1,△ABC中,AB=AC,點(diǎn)D在BC邊上,∠DAB=∠ABD,BE⊥AD,垂足為E,求證:BC=2AE.

小明經(jīng)探究發(fā)現(xiàn),過(guò)點(diǎn)A作AF⊥BC,垂足為F,得到∠AFB=∠BEA,從而可證△ABF≌△BAE(如圖2),使問(wèn)題得到解決.

(1)根據(jù)閱讀材料回答:△ABF與△BAE全等的條件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一個(gè))

參考小明思考問(wèn)題的方法,解答下列問(wèn)題:

(2)如圖3,△ABC中,AB=AC,∠BAC=90°,D為BC的中點(diǎn),E為DC的中點(diǎn),點(diǎn)F在AC的延長(zhǎng)線上,且∠CDF=∠EAC,若CF=2,求AB的長(zhǎng);

(3)如圖4,△ABC中,AB=AC,∠BAC=120°,點(diǎn)D、E分別在AB、AC邊上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案