【題目】閱讀下面材料:
小明遇到這樣一個(gè)問(wèn)題:如圖1,△ABC中,AB=AC,點(diǎn)D在BC邊上,∠DAB=∠ABD,BE⊥AD,垂足為E,求證:BC=2AE.
小明經(jīng)探究發(fā)現(xiàn),過(guò)點(diǎn)A作AF⊥BC,垂足為F,得到∠AFB=∠BEA,從而可證△ABF≌△BAE(如圖2),使問(wèn)題得到解決.
(1)根據(jù)閱讀材料回答:△ABF與△BAE全等的條件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一個(gè))
參考小明思考問(wèn)題的方法,解答下列問(wèn)題:
(2)如圖3,△ABC中,AB=AC,∠BAC=90°,D為BC的中點(diǎn),E為DC的中點(diǎn),點(diǎn)F在A(yíng)C的延長(zhǎng)線(xiàn)上,且∠CDF=∠EAC,若CF=2,求AB的長(zhǎng);
(3)如圖4,△ABC中,AB=AC,∠BAC=120°,點(diǎn)D、E分別在A(yíng)B、AC邊上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).
【答案】(1)AAS;(2)AB=4;(3).
【解析】
試題分析:(1)作AF⊥BC,根據(jù)已知條件易得∠AFB=∠BEA,∠DAB=∠ABD,AB=AB,根據(jù)AAS可判斷出△ABF≌△BAE;(2)連接AD,作CG⊥AF,易得tan∠DAE=,再由tan∠F=tan∠DAE,求出CG,再證△DCG∽△ACE,根據(jù)相似三角形的性質(zhì)即可求出AC;(3)過(guò)點(diǎn)D作DG⊥BC,設(shè)DG=a,在Rt△ABH,Rt△ADN,Rt△ABH中分別用a,k表示出AB=2a(k+1),BH=a(k+1),BC=2BH=2a(k+1),CG=a(2k+1),DN=ka,最后用△NDE∽△GDC,求出AE,EC即可.
試題解析:證明:(1)如圖2,
作AF⊥BC,
∵BE⊥AD,∴∠AFB=∠BEA,
在△ABF和△BAE中,
,
∴△ABF≌△BAE(AAS),
∴BF=AE
∵AB=AC,AF⊥BC,
∴BF=BC,
∴BC=2AE,
故答案為AAS
(2)如圖3,
連接AD,作CG⊥AF,
在Rt△ABC中,AB=AC,點(diǎn)D是BC中點(diǎn),
∴AD=CD,
∵點(diǎn)E是DC中點(diǎn),
∴DE=CD=AD,
∴tan∠DAE==,
∵AB=AC,∠BAC=90°,點(diǎn)D為BC中點(diǎn),
∴∠ADC=90°,∠ACB=∠DAC=45°,
∴∠F+∠CDF=∠ACB=45°,
∵∠CDF=∠EAC,
∴∠F+∠EAC=45°,
∵∠DAE+∠EAC=45°,
∴∠F=∠DAE,
∴tan∠F=tan∠DAE=,
∴,
∴CG=×2=1,
∵∠ACG=90°,∠ACB=45°,
∴∠DCG=45°,
∵∠CDF=∠EAC,
∴△DCG∽△ACE,
∴,
∵CD=AC,CE=CD=AC,
∴,
∴AC=4;
∴AB=4;
(3)如圖4,
過(guò)點(diǎn)D作DG⊥BC,設(shè)DG=a,
在Rt△BGD中,∠B=30°,
∴BD=2a,BG=a,
∵AD=kDB,
∴AD=2ka,AB=BD+AD=2a+2ka=2a(k+1),
過(guò)點(diǎn)A作AH⊥BC,
在Rt△ABH中,∠B=30°.
∴BH=a(k+1),
∵AB=AC,AH⊥BC,
∴BC=2BH=2a(k+1),
∴CG=BC﹣BG=a(2k+1),
過(guò)D作DN⊥AC交CA延長(zhǎng)線(xiàn)與N,
∵∠BAC=120°,
∴∠DAN=60°,
∴∠ADN=30°,
∴AN=ka,DN=ka,
∵∠DGC=∠AND=90°,∠AED=∠BCD,
∴△NDE∽△GDC.
∴,
∴,
∴NE=3ak(2k+1),
∴EC=AC﹣AE=AB﹣AE=2a(k+1)﹣2ak(3k+1)=2a(1﹣3k2),
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】媽媽做了一份美味可口的菜品,為了了解菜品的咸淡是否適合,于是媽媽取了一點(diǎn)品嘗,屬于_________________ (填“普查”或“ 抽樣調(diào)查”)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上的一點(diǎn),直線(xiàn)MN經(jīng)過(guò)點(diǎn)C,過(guò)點(diǎn)A作直線(xiàn)MN的垂線(xiàn),垂足為點(diǎn)D,且∠BAC=∠CAD.
(1)求證:直線(xiàn)MN是⊙O的切線(xiàn);
(2)若CD=3,∠CAD=30°,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=x2﹣3x+與x軸相交于A(yíng)、B兩點(diǎn),與y軸相交于點(diǎn)C,點(diǎn)D是直線(xiàn)BC下方拋物線(xiàn)上一點(diǎn),過(guò)點(diǎn)D作y軸的平行線(xiàn),與直線(xiàn)BC相交于點(diǎn)E
(1)求直線(xiàn)BC的解析式;
(2)當(dāng)線(xiàn)段DE的長(zhǎng)度最大時(shí),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C、D在⊙O上,∠A=2∠BCD,點(diǎn)E在AB的延長(zhǎng)線(xiàn)上,∠AED=∠ABC
(1)求證:DE與⊙O相切;
(2)若BF=2,DF=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等腰三角形頂角的平分線(xiàn)、底邊上的中線(xiàn)、底邊上的高__________(也稱(chēng)“_____________”),它們所在的直線(xiàn)都是等腰三角形的_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,將□ABCD置于直角坐標(biāo)系中,其中BC邊在x軸上(B在C的左側(cè)),點(diǎn)D坐標(biāo)為(0,4),直線(xiàn)MN:y=x-6沿著x軸的負(fù)方向以每秒1個(gè)單位的長(zhǎng)度平移,設(shè)在平移過(guò)程中該直線(xiàn)被□ABCD截得的線(xiàn)段長(zhǎng)度為m,平移時(shí)間為t(s),m與t的函數(shù)圖像如圖②所示.
(1)填空:點(diǎn)C的坐標(biāo)為 ;在平移過(guò)程中,該直線(xiàn)先經(jīng)過(guò)B、D中的哪一點(diǎn)? ;(填“B”或“D”)
(2)點(diǎn)B的坐標(biāo)為 ,a= .
(3)求圖②中線(xiàn)段EF的函數(shù)關(guān)系式;
(4)t為何值時(shí),該直線(xiàn)平分□ABCD的面積?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABO的頂點(diǎn)O在坐標(biāo)原點(diǎn),點(diǎn)B在x軸上,∠ABO=90°,∠AOB=30°,OB=2,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)OA的中點(diǎn)C,交AB于點(diǎn)D.
(1)求反比例函數(shù)的關(guān)系式;
(2)連接CD,求四邊形CDBO的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com