【題目】下面是小元設(shè)計(jì)的“過圓上一點(diǎn)作圓的切線”的尺規(guī)作圖過程

已知:如圖,OO上一點(diǎn)P.

求作:過點(diǎn)PO的切線.

作法:如圖,

作射線OP;

在直線OP外任取一點(diǎn)A,以點(diǎn)A為圓心,AP為半徑作A,與射線OP交于另一點(diǎn)B

連接并延長BAA交于點(diǎn)C;

作直線PC;

則直線PC即為所求.

根據(jù)小元設(shè)計(jì)的尺規(guī)作圖過程,

(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

(2)完成下面的證明:

證明: BCA的直徑,

∴∠BPC=90°(____________)(填推理的依據(jù))

OPPC

OPO的半徑,

PCO的切線(____________)(填推理的依據(jù))

【答案】(1)補(bǔ)全的圖形見解析;(2)直徑所對的圓周角是直角;經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線.

【解析】

(1)根據(jù)題意作出圖形即可;

(2)根據(jù)圓周角定理得到BPC=90°,根據(jù)切線的判定定理即可得到結(jié)論.

(1)補(bǔ)全圖形如圖所示,則直線PC即為所求;

(2)證明:BC是A的直徑,

∴∠BPC=90°(圓周角定理),

OPPC.

OP是O的半徑,

PC是O的切線(切線的判定).

故答案為:圓周角定理,切線的判定.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC.

(1)求AC的長;

(2)先將△ABC向右平移2個(gè)單位得到△A′B′C′,寫出A點(diǎn)的對應(yīng)點(diǎn)A′的坐標(biāo);

(3)再將△ABC繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)90°后得到△A1B1C1,寫出A點(diǎn)對應(yīng)點(diǎn)A1的坐標(biāo).

(4)求點(diǎn)A到A′所畫過痕跡的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知鈍角三角形ABC,將△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)110°得到△ABC′,連接BB′,若AC′∥BB′,則∠CAB′的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=-x+2 與x軸、y軸分別相交于A、B兩點(diǎn),圓心P的坐標(biāo)為(-2,0),⊙P與y軸相切于點(diǎn)O.若將⊙P沿x軸向右移動(dòng),當(dāng)⊙P與該直線相交時(shí),滿足橫坐標(biāo)為整數(shù)的點(diǎn)P的個(gè)數(shù)是( )

A. 3 B. 4 C. 5 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在課外學(xué)習(xí)時(shí)遇到這樣一個(gè)問題:

定義:如果二次函數(shù)y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常數(shù))與y=a2x2+b2x+c2

(a2≠0,a2,b2,c2是常數(shù))滿足a1+a2=0,b1=b2,c1+c2=0,則稱這兩個(gè)函數(shù)互為“旋轉(zhuǎn)函數(shù)”.求y=-2x2+5x-3函數(shù)的“旋轉(zhuǎn)函數(shù)”.

小明是這樣思考的:由y=-2x2+5x-3函數(shù)可知,a1=-2,b1=5,c1=-3,根據(jù)a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能確定這個(gè)函數(shù)的“旋轉(zhuǎn)函數(shù)”.

請參考小明的方法解決下面的問題:

(1)寫出函數(shù)y=-2x2+5x-3的“旋轉(zhuǎn)函數(shù)”;

(2)若函數(shù)y1=x2 x-n與y2=-x2-mx-2互為“旋轉(zhuǎn)函數(shù)”,求(m+n)2019的值;

(3)已知函數(shù)y=(x-2)(x+3)的圖像與軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)A、B、C關(guān)于原點(diǎn)的對稱點(diǎn)分別是A1、B1、C1,試證明經(jīng)過點(diǎn)A1、B1、C1的二次函數(shù)與函數(shù)y= (x-2)(x+3)互為“旋轉(zhuǎn)函數(shù)”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線G:y=ax2-4ax+3a-2(a≠0),其頂點(diǎn)為C,直線l:y=ax-2a+1(a≠0)與x軸、y軸分別交于A,B兩點(diǎn).

(1)當(dāng)拋物線G的頂點(diǎn)C在x軸上時(shí),求a的值;

(2)當(dāng)a>0時(shí),若ABC的面積為2,求a的值;

(3)若點(diǎn)Q(m,n)在拋物線G上,把拋物線G繞著點(diǎn)P(t,-2)旋轉(zhuǎn)180°,在1≤m≤3時(shí),總有n隨著m的增大而增大,請直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司開發(fā)出一款新的節(jié)能產(chǎn)品,該產(chǎn)品的成本價(jià)為6/件,該產(chǎn)品在正式投放市場前通過代銷點(diǎn)進(jìn)行了為期一個(gè)月(30天)的試銷售,售價(jià)為8/件,工作人員對銷售情況進(jìn)行了跟蹤記錄,并將記錄情況繪成圖象,圖中的折線ODE表示日銷售量y(件)與銷售時(shí)間x(天)之間的函數(shù)關(guān)系,已知線段DE表示的函數(shù)關(guān)系中時(shí)間每增加1天,日銷售量減少5件.

1)第17天的日銷售量是   件,日銷售利潤是   元.

2)求試銷售期間日銷售利潤的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)C、D在線段AB上,若點(diǎn)C是線段AD的中點(diǎn),2BD>AD,則下列結(jié)論正確的是( ).

A. CD<AD- BD B. AB>2BD C. BD>AD D. BC>AD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的邊長AD=6,AB=4,EAB的中點(diǎn),F在邊BC上,且BF=2FC,AF分別與DE、DB相交于點(diǎn)MN,則MN的長為(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案