【題目】 如圖,邊長為6的大正方形中有兩個(gè)小正方形,若兩個(gè)小正方形的面積分別為S1,S2,則S1+S2的值為( )
A.16 B.17 C.18 D. 19
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知代數(shù)式x﹣2y的值是5,則代數(shù)式﹣3x+6y+1的值是( 。
A. 16 B. ﹣14 C. 14 D. ﹣16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,點(diǎn)P是CD的中點(diǎn),∠BCD=60°,射線AP交BC的延長線于點(diǎn)E,射線BP交DE于點(diǎn)K,點(diǎn)O是線段BK的中點(diǎn),作BM⊥AE于點(diǎn)M,作KN⊥AE于點(diǎn)N,連結(jié)MO、NO,以下四個(gè)結(jié)論:①△OMN是等腰三角形;②tan∠OMN=;③BP=4PK;④PMPA=3PD2,其中正確的是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某顧客以八折的優(yōu)惠價(jià)買了一件商品,比標(biāo)價(jià)少付了30元,那么他購買這件商品花了__ 元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(1,1),點(diǎn)B的坐標(biāo)為(11,1),點(diǎn)C到直線AB的距離為4,且△ABC是直角三角形,則滿足條件的點(diǎn)C( 。﹤(gè).
A. 7B. 6C. 5D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AE是角平分線,BM平分∠ABC交AE于點(diǎn)M,經(jīng)過B,M兩點(diǎn)的⊙O交BC于點(diǎn)G,交AB于點(diǎn)F,FB恰為⊙O的直徑.
(1)求證:AE與⊙O相切;
(2)當(dāng)BC=4,AC=6,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a≠0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(﹣1,0),且OC=OB,tan∠ACO=.
(1)求拋物線的解析式;
(2)若點(diǎn)D和點(diǎn)C關(guān)于拋物線的對稱軸對稱,直線AD下方的拋物線上有一點(diǎn)P,過點(diǎn)P作PH⊥AD于點(diǎn)H,作PM平行于y軸交直線AD于點(diǎn)M,交x軸于點(diǎn)E,求△PHM的周長的最大值;
(3)在(2)的條件下,以點(diǎn)E為端點(diǎn),在直線EP的右側(cè)作一條射線與拋物線交于點(diǎn)N,使得∠NEP為銳角,在線段EB上是否存在點(diǎn)G,使得以E,N,G為頂點(diǎn)的三角形與△AOC相似?如果存在,請求出點(diǎn)G的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰Rt△ABC和等腰Rt△AED中,∠ACB=∠AED=90°,且AD=AC.
(1)發(fā)現(xiàn):如圖1,當(dāng)點(diǎn)E在AB上且點(diǎn)C和點(diǎn)D重合時(shí),若點(diǎn)M、N分別是DB、EC的中點(diǎn),則MN與EC的位置關(guān)系是 ,MN與EC的數(shù)量關(guān)系是 .
(2)探究:若把(1)小題中的△AED繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°得到的圖2,連接BD和EC,并連接DB、EC的中點(diǎn)M、N,則MN與EC的位置關(guān)系和數(shù)量關(guān)系仍然能成立嗎?若成立,請給予證明,若不成立,請說明理由.
(3)若把(1)小題中的△AED繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°得到的圖3,連接BD和EC,并連接DB、EC的中點(diǎn)M、N,則MN與EC的位置關(guān)系和數(shù)量關(guān)系仍然能成立嗎?若成立,請給予證明,若不成立,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com