【題目】已知AB=7a27ab,且B=4a25ab8.(1)求A等于多少?
2)若,求A的值.

【答案】1A=3a2-2ab+8;(2A=15

【解析】

1)把B=4a25ab8代入AB=7a27ab中可以求得A的值;
2)根據(jù)|a+1|+b-22=0,可以求得ab的值,然后代入(1)中的A的代數(shù)式,即可解答本題.

解:(1)∵A-B=7a2-7ab,且B=-4a2+5ab+8
A--4a2+5ab+8=7a2-7ab,
解得,A=3a2-2ab+8;
2)∵|a+1|+b-22=0,
a+1=0,b-2=0
解得,a=-1,b=2
A=3a2-2ab+8=3×-12-2×-1×2+8=15

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】2018無錫市體育中考男生項目分為速度耐力類、力量類和靈巧類,每位考生只能在三類中各選一項進行考試.其中速度耐力類項目有:50米跑、800米跑、50米游泳;力量類項目有:擲實心球、引體向上;靈巧類項目有:30秒鐘跳繩、立定跳遠、俯臥撐、籃球運球.男生小明“50米跑是強項,他決定必選,其它項目在平時測試中成績完全相同,他決定隨機選擇.

(1)請用畫樹狀圖或列表的方法求小明50米跑、引體向上和立定跳遠’”的概率;

(2)小明所選的項目中有立定跳遠的概率是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)發(fā)現(xiàn):

如圖1,點A為線段BC外一動點,且BC=a,AB=b

填空:當點A位于     時,線段AC的長取得最大值,且最大值為     (用含a,b的式子表示)

(2)應用:

A為線段BC外一動點,且BC=3,AB=1,如圖2所示,分別以ABAC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE

①請找出圖中與BE相等的線段,并說明理由;

②直接寫出線段BE長的最大值.

(3)拓展:

如圖3,在平面直角坐標系中,點A的坐標為(2,0),點B的坐標為(5,0),點P為線段AB外一動點,且PA=2,PM=PB,∠BPM=90°,請直接寫出線段AM長的最大值及此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了美化環(huán)境,建設宜居成都,我市準備在一個廣場上種植甲、乙兩種花卉.經(jīng)市場調查,甲種花卉的種植費用(元)與種植面積之間的函數(shù)關系如圖所示,乙種花卉的種植費用為每平方米100.

(1)直接寫出當時,的函數(shù)關系式;

(2)廣場上甲、乙兩種花卉的種植面積共,若甲種花卉的種植面積不少于且不超過乙種花卉種植面積的2倍,那么應該怎樣分配甲、乙兩種花卉的種植面積才能使種植費用最少?最少總費用為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】趙老師是一名健步走運動的愛好者為備戰(zhàn)2019中國地馬拉松系列賽·廣元站10千米群眾健身賽,她用手機軟件記錄了某個月(30天)每天健步走的步數(shù)(單位:萬步),將記錄結果繪制成了如圖所示的統(tǒng)計圖在每天健步走的步數(shù)這組數(shù)據(jù)中,眾數(shù)和中位數(shù)分別是(

A. 2.2,2.3B. 2.4,2.3C. 2.4,2.35D. 2.32.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下表是某!昂幽鲜h子聽寫大賽初賽”冠軍組成員的年齡分布

年齡/歲

12

13

14

15

人數(shù)

5

15

x

12﹣x

對于不同的x,下列關于年齡的統(tǒng)計量不會發(fā)生改變的是(  )

A. 平均數(shù)、中位數(shù) B. 平均數(shù)、方差 C. 眾數(shù)、中位數(shù) D. 中位數(shù)、方差

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義運算aba(1b),下面給出了關于這種運算的四個結論:

2(2)6 abba

ab0,則(aa)+(bb)2ab ab0,則a0

其中正確結論的序號是 (填上你認為所有正確結論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請將下列證明過程補充完整:

已知:如圖,點B、E分別在AC、DF上,AF分別交BD、CE于點MN,∠1=2,∠A=F.求證:∠C=D

證明:∵∠1=2(已知),

又∵∠1=ANC ),

=∠(等量代換).

),

∴∠ABD=C ).

又∵∠A=F(已知),

).

= ).

∴∠C=D

查看答案和解析>>

同步練習冊答案