精英家教網 > 初中數學 > 題目詳情

【題目】如圖,△ABC中,ABBCBFCF,∠C30°,DAC的中點,ECD的中點,連接BEAF交于G,連接DG

1)若EBC的距離為2,求AB的長;

2)證明:GD平分∠AGE;

3)猜想BG,FG,GD,AF的數量關系,并證明.

【答案】1AB8;(2)見解析;(3AFGB+GD+GF,見解析.

【解析】

1)如圖1中,作EHBCH.利用平行線分線段成比例定理即可解決問題;

2)如圖1中,連接BDDF,DMAFM,DNBEN.利用全等三角形的對應邊相等,面積相等,根據三角形面積公式即可證明DM=DN

3)結論:AF=GB+GD+GF.如圖2中,連接BD,DF,在GA上取一點M,使得GM=GD.利用全等三角形的性質證明GA=GB+GD,GE=GD+GF即可解決問題.

1)如圖1中,作EHBCH

ABBC,EHBC,∴EHAB,∴

AD=DC,DE=EC,∴ECAC=14

EH=2,∴,∴AB=8

2)如圖1中,連接BD,DFDMAFM,DNBEN

∵∠ABC=90°,AD=DC,∴BD=AD=DC

∵∠C=30°,∴ABAC=AD=DC

∵∠BAD=60°,∴△ABD是等邊三角形,同法可證△DEF是等邊三角形,∴AD=DB,DF=DE,∠ADB=EDF=60°,∴∠ADF=BDE=120°,∴△ADF≌△BDESAS),∴AF=BE,SADF=SBDE,∴AFDM=BEDN,∴DM=DN,∴DG平分∠AGE

3)結論:AF=GB+GD+GF

理由:如圖2中,連接BD,DF,在GA上取一點M,使得GM=GD

∵△ADF≌△△BDE,∴∠DAF=DBE,∴∠AGE=GBA+BAG=ABD+GBD+BAG=ABD+BAG+DAF=120°.

DG平分∠AGE,∴∠AGD=DGE=AGB=EGF=60°.

GM=GD,∴△DGM是等邊三角形,∴DM=DG,∠ADB=MDG=60°,∴∠ADM=BDG

AD=BDMD=GD,∴△AMD≌△BDG,∴BG=AM,∴AG=AM+GM=BG+DG,同法可證GE=DG+GF,∴AF=AG+FG=BG+DG+FG

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,為美化校園環(huán)境,某校計劃在一塊長為60米,寬為40米的長方形空地上修建一個長方形花圃,并將花圃四周余下的空地修建成同樣寬的通道,設通道寬為米.

(1)如果通道所占面積是整個長方形空地面積的,求出此時通道的寬;

(2)能否設計出符合題目要求,且長方形花圃的形狀與原長方形空地的形狀相似的花圃?若能,求出此時通道的寬;若不能,則說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,D BAC 的外角平分線上一點并且滿足 BDCD D DEAC E,DFAB BA 的延長線于 F,則下列結論:①△CDE≌△BDF;CEAB+AE;③∠BDCBAC;④∠DAFCBD.其中正確的結論有______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,A為∠MON內部一定點,點P、Q分別為射線OM,ON上的動點,若△APQ的周長最小時,∠PAQ40°,則∠MON_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一次函數的圖象如圖所示,它與二次函數的圖象交于兩點(其中點在點的左側),與這個二次函數圖象的對稱軸交于點

求點的坐標;

設二次函數圖象的頂點為

①若點與點關于軸對稱,且的面積等于,求此二次函數的關系式;

②若,且的面積等于,求此二次函數的關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀材料:連接多邊形的對角線或在多邊形邊上(非頂點)取一點或在多邊形內部取一點與多邊形各頂點的連線,能將多邊形分割成若干個小三角形,圖1給出了四邊形的具體分割方法,分別將四邊形分割成了個、個、個小三角形.

1)請你按照上述方法將圖2中的六邊形進行分割,并寫出每種方法所得到的小三角形的個數為 個、 個,

2)當多邊形為邊形時,按照上述方法進行分割,寫出每種分法所得到的小三角形的個數為 個、 個,

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,,且,,且,請按照圖中所標注的數據計算圖中實線所圍成的圖形的面積______.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=x2+mx+nx軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A1,0),C0,2).

1)求拋物線的表達式;

2)在拋物線的對稱軸上是否存在點P,使PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;

3)點E時線段BC上的一個動點,過點Ex軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,二次函數的圖象與軸相交于、兩點,與軸相交于點,點、是二次函數圖象上的一對對稱點,一次函數的圖象過點

點坐標;

求二次函數的解析式;

根據圖象直接寫出使一次函數值小于二次函數值的的取值范圍.

查看答案和解析>>

同步練習冊答案