【題目】如圖1,正方形ABCD和正方形AEFG,連接DG,BE

1)發(fā)現(xiàn):當(dāng)正方形AEFG繞點(diǎn)A旋轉(zhuǎn),如圖2,①線段DGBE之間的數(shù)量關(guān)系是   ;②直線DG與直線BE之間的位置關(guān)系是   

2)探究:如圖3,若四邊形ABCD與四邊形AEFG都為矩形,且AD2ABAG2AE,證明:直線DGBE

3)應(yīng)用:在(2)情況下,連結(jié)GE(點(diǎn)EAB上方),若GEAB,且ABAE1,則線段DG是多少?(直接寫出結(jié)論)

【答案】(1)BEDG,BEDG;(2)證明見解析;(3

【解析】

1)先判斷出ABE≌△ADG,進(jìn)而得出BE=DG,∠ABE=ADG,再利用等角的余角相等即可得出結(jié)論;

2)先利用兩邊對(duì)應(yīng)成比例夾角相等判斷出ABE∽△ADG,得出∠ABE=ADG,再利用等角的余角相等即可得出結(jié)論;

3)先求出BE,進(jìn)而得出BE=AB,即可得出四邊形ABEG是平行四邊形,進(jìn)而得出∠AEB=90°,求出BE,借助(2)得出的相似,即可得出結(jié)論.

1)①∵四邊形ABCD和四邊形AEFG是正方形,

AE=AG,AB=AD,∠BAD=EAG=90°,

∴∠BAE=DAG,

ABEADG中,

∴△ABE≌△ADGSAS),

BE=DG

②如圖2,延長(zhǎng)BEADG,交DGH,

由①知,ABE≌△ADG,

∴∠ABE=ADG,

∵∠AGB+ABE=90°

∴∠AGB+ADG=90°

∵∠AGB=DGH,

∴∠DGH+ADG=90°,

∴∠DHB=90°,

BEDG

2)∵四邊形ABCD與四邊形AEFG都為矩形,

∴∠BAD=DAG,

∴∠BAE=DAG,

AD=2ABAG=2AE

,

∴△ABE∽△ADG

∴∠ABE=ADG,

∵∠AGB+ABE=90°,

∴∠AGB+ADG=90°

∵∠AGB=DGH,

∴∠DGH+ADG=90°,

∴∠DHB=90°

BEDG;

3)如圖4,(為了說明點(diǎn)BE,F在同一條線上,特意畫的圖形)

EGAB,

∴∠DME=DAB=90°,

RtAEG中,AE=1,

AG=2AE=2,

根據(jù)勾股定理得,EG=

AB=

EG=AB,

EGAB,

∴四邊形ABEG是平行四邊形,

AGBE,

AGEF,

∴點(diǎn)BE,F在同一條直線上如圖5,

∴∠AEB=90°

RtABE中,根據(jù)勾股定理得,BE==2,

由(3)知,ABE∽△ADG

,

DG=4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為等邊三角形ABC內(nèi)的一點(diǎn),且P到三個(gè)頂點(diǎn)A,BC的距離分別為3,4,5,則ABC的面積為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有三張正面分別標(biāo)有數(shù)字:﹣1,1,2的卡片,它們除數(shù)字不同外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中抽出一張記下數(shù)字,放回洗勻后再?gòu)闹须S機(jī)抽出一張記下數(shù)字.

1)請(qǐng)用列表或畫樹狀圖的方法(只選其中一種),表示兩次抽出卡片上的數(shù)字的所有結(jié)果;

2)將第一次抽出的數(shù)字作為點(diǎn)的橫坐標(biāo)x,第二次抽出的數(shù)字作為點(diǎn)的縱坐標(biāo)y,求點(diǎn)(x,y)落在直線y=x上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校教學(xué)樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22時(shí),

教學(xué)樓在建筑物的墻上留下高2m的影子CE;而當(dāng)光線與地面的夾角是45時(shí),教學(xué)樓頂A在地面上的影子F與墻角C13m的距離(B、FC在一條直線上)

(1)求教學(xué)樓AB的高度;

(2)學(xué)校要在AE之間掛一些彩旗,請(qǐng)你求出A、E之間的距離(結(jié)果保留整數(shù))

(參考數(shù)據(jù):sin22≈cos22≈,tan22≈)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AEBF,AC平分BAE,且交BF于點(diǎn)C,BD平分ABF,且交AE于點(diǎn)D,連接CD.

(1)求證:四邊形ABCD是菱形;

(2)若ADB=30°,BD=6,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b與反比例函數(shù)y的圖象交于A2,3),B(﹣3,n)兩點(diǎn).

1)求反比例函數(shù)的解析式;

2)過B點(diǎn)作BCx軸,垂足為C,若P是反比例函數(shù)圖象上的一點(diǎn),連接PC,PB,求當(dāng)△PCB的面積等于5時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A0,3),B3,4),C2,2.(正方形網(wǎng)格中, 每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度)

1)畫出△ABC向下平移4個(gè)單位得到的△A1B1C1,并直接寫出C1點(diǎn)的坐標(biāo);

2)以點(diǎn)B為位似中心,在網(wǎng)格中畫出△A2BC2,使△A2BC2△ABC位似,且位似比為21,并直接寫出C2點(diǎn)的坐標(biāo)及△A2BC2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2+bx+c中,b4a,它的圖象如圖,有以下結(jié)論:①c0;②a+b+c0;③ab+c0 b24ac0;⑤abc0;⑥4ac;其中正確的為_____(填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某片果園有果樹80棵,現(xiàn)準(zhǔn)備多種一些果樹提高果園產(chǎn)量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會(huì)減少,單棵樹的產(chǎn)量隨之降低.若該果園每棵果樹產(chǎn)果y(千克),增種果樹x(),它們之間的函數(shù)關(guān)系如圖所示.

(1)yx之間的函數(shù)關(guān)系式.

(2)在投入成本最低的情況下,增種果樹多少棵時(shí),果園可以收獲果實(shí)7000千克.

(3)當(dāng)增種果樹多少棵時(shí),果園的總產(chǎn)量w(千克)最大?此時(shí)每棵果樹的產(chǎn)量是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案