【題目】如圖,已知拋物線y=﹣x2﹣2x+m+1與x軸交于A(x1 , 0)、B(x2 , 0)兩點,且x1<0,x2>0,與y軸交于點C,頂點為P.(提示:若x1 , x2是一元二次方程ax2+bx+c=0(a≠0)的兩個實根,則x1+x2=﹣ ,x1x2= )
(1)求m的取值范圍;
(2)若OA=3OB,求拋物線的解析式;
(3)在(2)中拋物線的對稱軸PD上,存在點Q使得△BQC的周長最短,試求出點Q的坐標.
【答案】(1)m>﹣1;(2)y=﹣x2﹣2x+3;(3)存在點Q(﹣1,2)使得△BQC的周長最短.
【解析】
(1)將拋物線的問題轉(zhuǎn)化到一元二次方程中,利用一元二次方程根的判別式和根與系數(shù)的關(guān)系解決;
(2)先用一元二次方程的兩根表示出OA,OB,再用根與系數(shù)的關(guān)系即可;
(3)先由于點A,B關(guān)于拋物線的對稱軸PD對稱,連接AC與PD的交點就是使△BQC的周長最短,然后確定出直線AC解析式,最后將拋物線的對稱軸代入直線AC解析式中即可.
(1)令y=0,則有﹣x2﹣2x+m+1=0,
即:x1 , x2是一元二次方程x2+2x﹣(m+1)=0,
∵拋物線y=﹣x2﹣2x+m+1與x軸交于A(x1 , 0)、B(x2 , 0)兩點,
∴x1x2=﹣(m+1),x1+x2=﹣2,
△=4+4(m+1)>0,
∴m>﹣2
∵x1<0,x2>0,
∴x1x2<0,
∴﹣(m+1)<0,
∴m>﹣1,
即m>﹣1
(2)解:∵A(x1 , 0)、B(x2 , 0)兩點,且x1<0,x2>0,
∴OA=﹣x1 , OB=x2 ,
∵OA=3OB,
∴﹣x1=3x2 , ①
由(1)知,x1+x2=﹣2,②
x1x2=﹣(m+1),③
聯(lián)立①②③得,x1=﹣3,x2=1,m=2,
∴拋物線的解析式y=﹣x2﹣2x+3
(3)存在點Q,
理由:如圖,
連接AC交PD于Q,點Q就是使得△BQC的周長最短,(∵點A,B關(guān)于拋物線的對稱軸PD對稱,)
連接BQ,
由(2)知,拋物線的解析式y=﹣x2﹣2x+3;x1=﹣3,
∴拋物線的對稱軸PD為x=﹣1,C(0,3),A(﹣3,0),
∴用待定系數(shù)法得出,直線AC解析式為y=x+3,
當x=﹣1時,y=2,
∴Q(﹣1,2),
∴點Q(﹣1,2)使得△BQC的周長最短
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸交于點A(﹣1,0),B(4,0),與y軸交于點C(0,4).
(1)求此拋物線的解析式;
(2)設(shè)點P(2,n)在此拋物線上,AP交y軸于點E,連接BE,BP,請判斷△BEP的形狀,并說明理由;
(3)設(shè)拋物線的對稱軸交x軸于點D,在線段BC上是否存在點Q,使得△DBQ成為等腰直角三角形?若存在,求出點Q的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=2,點M在BC上,連接AM,作∠AMN=∠AMB,點N在直線AD上,MN交CD于點E
(1)求證:△AMN是等腰三角形;
(2)求BMAN的最大值;
(3)當M為BC中點時,求ME的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校在一次社會實踐活動中,組織學生參觀了虎園、烈士陵園、博物館和植物園,為了解本次社會實踐活動的效果,學校隨機抽取了部分學生,對“最喜歡的景點”進行了問卷調(diào)查,并根據(jù)統(tǒng)計結(jié)果繪制了如下不完整的統(tǒng)計圖.其中最喜歡烈士陵園的學生人數(shù)與最喜歡博物館的學生人數(shù)之比為2:1,請結(jié)合統(tǒng)計圖解答下列問題:
(1)本次活動抽查了 名學生;
(2)請補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,最喜歡植物園的學生人數(shù)所對應(yīng)扇形的圓心角是 度;
(4)該校此次參加社會實踐活動的學生有720人,請求出最喜歡烈士陵園的人數(shù)約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y1=kx+1與二次函數(shù)y2=ax2+bx﹣2交于A,B兩點,且A(1,0)拋物線的對稱軸是x=﹣ .
(1)求k和a、b的值;
(2)求不等式kx+1>ax2+bx﹣2的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一.小強用所學知識對一條筆直公路上的車輛進行測速,如圖所示,觀測點C到公路的距離CD=200m,檢測路段的起點A位于點C的南偏東60°方向上,終點B位于點C的南偏東45°方向上.一輛轎車由東向西勻速行駛,測得此車由A處行駛到B處的時間為10s.問此車是否超過了該路段16m/s的限制速度?(觀測點C離地面的距離忽略不計,參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,,,以BC為直徑作半圓,圓心為點O;以點C為圓心,BC為半徑作,過點O作AC的平行線交兩弧于點D、E,則陰影部分的面積是
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+bx+c與x軸交于A(2,0),B(﹣4,0)兩點.
(1)求該拋物線的解析式;
(2)若拋物線交y軸于C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最小?若存在,求出Q點的坐標;若不存在,請說明理由.
(3)在拋物線的第二象限圖象上是否存在一點P,使得△PBC的面積最大?若存在,求出點P的坐標及△PBC的面積最大值;若不存,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,∠AOC=30°,半徑為1cm的⊙P的圓心在直線AB上,且與點O的距離為6cm.如果⊙P以1cm∕s的速度,沿由A向B的方向移動,那么________秒種后⊙P與直線CD相切.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com