【題目】如圖,,,以BC為直徑作半圓,圓心為點(diǎn)O;以點(diǎn)C為圓心,BC為半徑作,過點(diǎn)O作AC的平行線交兩弧于點(diǎn)D、E,則陰影部分的面積是
A. B.
C. D.
【答案】A
【解析】分析:如圖,連接CE.圖中S陰影=S扇形BCE-S扇形BOD-S△OCE.根據(jù)已知條件易求得OB=OC=OD=2,BC=CE=4.∠ECB=60°,OE=2所以由扇形面積公式、三角形面積公式進(jìn)行解答即可.
詳解:如圖,連接CE.
∵AC⊥BC,AC=BC=4,以BC為直徑作半圓,圓心為點(diǎn)O;以點(diǎn)C為圓心,BC為半徑作弧AB,
∴∠ACB=90°,OB=OC=OD=2,BC=CE=4.
又∵OE∥AC,
∴∠ACB=∠COE=90°.
在直角△OEC中,
∵OC=2,CE=4,
∴∠CEO=30°,∠ECB=60°,OE==2,
∴S陰影=S扇形BCE-S扇形BOD-S△OCE
=
= .
故選A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)探索發(fā)現(xiàn):如圖1,已知Rt△ABC中,∠ACB=90°,AC=BC,直線l過點(diǎn)C,過點(diǎn)A作AD⊥l,過點(diǎn)B作BE⊥l,垂足分別為D、E.求證:AD=CE,CD=BE.
(2)遷移應(yīng)用:如圖2,將一塊等腰直角的三角板MON放在平面直角坐標(biāo)系內(nèi),三角板的一個(gè)銳角的頂點(diǎn)與坐標(biāo)原點(diǎn)O重合,另兩個(gè)頂點(diǎn)均落在第一象限內(nèi),已知點(diǎn)M的坐標(biāo)為(1,3),求點(diǎn)N的坐標(biāo).
(3)拓展應(yīng)用:如圖3,在平面直角坐標(biāo)系內(nèi),已知直線y=﹣3x+3與y軸交于點(diǎn)P,與x軸交于點(diǎn)Q,將直線PQ繞P點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)45°后,所得的直線交x軸于點(diǎn)R.求點(diǎn)R的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是將拋物線y=-x2 平移后得到的拋物線,其對稱軸為x=1,與x軸的一個(gè)交點(diǎn)為A(-1,0) ,另一交點(diǎn)為B,與y軸交點(diǎn)為C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)N 為拋物線上一點(diǎn),且BC⊥NC,求點(diǎn)N的坐標(biāo);
(3)點(diǎn)P是拋物線上一點(diǎn),點(diǎn)Q是一次函數(shù)y=x+的圖象上一點(diǎn),若四邊形OAPQ為平行四邊形,這樣的點(diǎn)P、Q是否存在?若存在,分別求出點(diǎn)P、Q的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)O在直線PQ上,過點(diǎn)O作射線OC,使∠POC=130°,將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處.
(1)如圖①所示,將直角三角板AOB的一邊OA與射線OP重合,則∠BOC=________°.
(2)將圖①中的直角三角板AOB繞點(diǎn)O旋轉(zhuǎn)一定角度得到如圖②所示的位置,若OA平分∠POC,求∠BOQ的度數(shù).
(3)將圖①中的直角三角板AOB繞點(diǎn)O旋轉(zhuǎn)一周,存在某一時(shí)刻恰有OB⊥OC,求出所有滿足條件的∠AOQ的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉(xiāng)”政策的實(shí)施,商場決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺.
(1)假設(shè)每臺冰箱降價(jià)x元,商場每天銷售這種冰箱的利潤是y元,請寫出y與x之間的函數(shù)表達(dá)式;(不要求寫自變量的取值范圍)
(2)商場要想在這種冰箱銷售中每天盈利4800元,同時(shí)又要使百姓得到實(shí)惠,每臺冰箱應(yīng)降價(jià)多少元?
(3)每臺冰箱降價(jià)多少元時(shí),商場每天銷售這種冰箱的利潤最高?最高利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直線上,線段,動點(diǎn)從出發(fā),以每秒2個(gè)單位長度的速度在直線上運(yùn)動.為的中點(diǎn),為的中點(diǎn),設(shè)點(diǎn)的運(yùn)動時(shí)間為秒.
(1)若點(diǎn)在線段上的運(yùn)動,當(dāng)時(shí),________;
(2)若點(diǎn)在射線上的運(yùn)動,當(dāng)時(shí),求點(diǎn)的運(yùn)動時(shí)間的值;
(3)當(dāng)點(diǎn)在線段的反向延長線上運(yùn)動時(shí),線段AB、PM、PN有怎樣的數(shù)量關(guān)系?請寫出你的結(jié)論,并說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點(diǎn)E,F分別在AD,BC上,將紙片ABCD沿直線EF折疊,點(diǎn)C落在AD上的一點(diǎn)H處,點(diǎn)D落在點(diǎn)G處,有以下四個(gè)結(jié)論:
①四邊形CFHE是菱形;②線段BF的取值范圍為3≤BF≤4;
③EC平分∠DCH;④當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),EF=.
以上結(jié)論中,你認(rèn)為正確的有______.(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+1交y軸于點(diǎn)A,交x軸正半軸于點(diǎn)B(4,0) ,與過A點(diǎn)的直線相交于另一點(diǎn)D(3,) ,過點(diǎn)D作DC⊥x軸,垂足為C.
(1)求拋物線的表達(dá)式;
(2)點(diǎn)P在線段OC上(不與點(diǎn)O,C重合),過P作PN⊥x軸,交直線AD于M,交拋物線于點(diǎn)N,連接CM,求△PCM 面積的最大值;
(3)若P 是x 軸正半軸上的一動點(diǎn),設(shè)OP 的長為t.是否存在t,使以點(diǎn)M,C,D,N 為頂點(diǎn)的四邊形是平行四邊形?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開展了“手機(jī)伴我健康行”主題活動.他們隨機(jī)抽取部分學(xué)生進(jìn)行“手機(jī)使用目的”和“每周使用手機(jī)時(shí)間”的問卷調(diào)查,并繪制成如圖①②的統(tǒng)計(jì)圖。已知“查資料”人人數(shù)是40人。
請你根據(jù)以上信息解答以下問題
(1)在扇形統(tǒng)計(jì)圖中,“玩游戲”對應(yīng)的圓心角度數(shù)是_______________。
(2)補(bǔ)全條形統(tǒng)計(jì)圖
(3)該校共有學(xué)生1200人,估計(jì)每周使用手機(jī)時(shí)間在2小時(shí)以上(不含2小時(shí))的人數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com