【題目】如圖,矩形中,,,是邊上的一點(diǎn),且,點(diǎn)在矩形所在的平面中,且,則的最大值是_________.
【答案】5+.
【解析】
由四邊形是矩形得到內(nèi)接于,利用勾股定理求出直徑BD的長(zhǎng),由確定點(diǎn)P在上,連接MO并延長(zhǎng),交于一點(diǎn)即為點(diǎn)P,此時(shí)PM最長(zhǎng),利用勾股定理求出OM,再加上OP即可得到PM的最大值.
連接BD,
∵四邊形ABCD是矩形,
∴∠BAD=∠BCD=90,AD=BC=8,
∴BD=10,
以BD的中點(diǎn)O為圓心5為半徑作,
∵,
∴點(diǎn)P在上,
連接MO并延長(zhǎng),交于一點(diǎn)即為點(diǎn)P,此時(shí)PM最長(zhǎng),且OP=5,
過(guò)點(diǎn)O作OH⊥AD于點(diǎn)H,
∴AH=AD=4,
∵AM=2,
∴MH=2,
∵點(diǎn)O、H分別為BD、AD的中點(diǎn),
∴OH為△ABD的中位線,
∴OH=AB=3,
∴OM=,
∴PM=OP+OM=5+.
故答案為:5+.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)“學(xué)雷鋒、樹(shù)新風(fēng)、做文明中學(xué)生”號(hào)召,某校開(kāi)展了志愿者服務(wù)活動(dòng),活動(dòng)項(xiàng)目有“戒毒宣傳”、“文明交通崗”、“關(guān)愛(ài)老人”、“義務(wù)植樹(shù)”、“社區(qū)服務(wù)”等五項(xiàng),活動(dòng)期間,隨機(jī)抽取了部分學(xué)生對(duì)志愿者服務(wù)情況進(jìn)行調(diào)查,結(jié)果發(fā)現(xiàn),被調(diào)查的每名學(xué)生都參與了活動(dòng),最少的參與了1項(xiàng),最多的參與了5項(xiàng),根據(jù)調(diào)查結(jié)果繪制了如圖所示不完整的折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
(1)被隨機(jī)抽取的學(xué)生共有多少名?
(2)在扇形統(tǒng)計(jì)圖中,求活動(dòng)數(shù)為3項(xiàng)的學(xué)生所對(duì)應(yīng)的扇形圓心角的度數(shù),并補(bǔ)全折線統(tǒng)計(jì)圖;
(3)該校共有學(xué)生2000人,估計(jì)其中參與了4項(xiàng)或5項(xiàng)活動(dòng)的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△BCD中,DF⊥BC于點(diǎn)F,點(diǎn)A為直線DF上一動(dòng)點(diǎn),以B為旋轉(zhuǎn)中心,把BA順時(shí)針?lè)较蛐D(zhuǎn)60°至BE,連接EC.
(1)當(dāng)點(diǎn)A在線段DF的延長(zhǎng)線上時(shí),
①求證:DA=CE;
②判斷∠DEC和∠EDC的數(shù)量關(guān)系,并說(shuō)明理由;
(2)當(dāng)∠DEC=45°時(shí),連接AC,求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),四邊形OABC的頂點(diǎn)A在軸的正半軸上,OA=4,OC=2,點(diǎn)P,點(diǎn)Q分別是邊BC,邊AB上的點(diǎn),連結(jié)AC,PQ,點(diǎn)B1是點(diǎn)B關(guān)于PQ的對(duì)稱(chēng)點(diǎn).
(1)若四邊形OABC為矩形,如圖1,
①求點(diǎn)B的坐標(biāo);
②若BQ:BP=1:2,且點(diǎn)B1落在OA上,求點(diǎn)B1的坐標(biāo);
(2)若四邊形OABC為平行四邊形,如圖2,且OC⊥AC,過(guò)點(diǎn)B1作B1F∥軸,與對(duì)角線AC、邊OC分別交于點(diǎn)E、點(diǎn)F.若B1E: B1F=1:3,點(diǎn)B1的橫坐標(biāo)為,求點(diǎn)B1的縱坐標(biāo),并直接寫(xiě)出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線交軸于、兩點(diǎn),交軸于點(diǎn),點(diǎn)的坐標(biāo)為,直線經(jīng)過(guò)點(diǎn)、.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)是直線上方拋物線上的一動(dòng)點(diǎn),求面積的最大值并求出此時(shí)點(diǎn)的坐標(biāo);
(3)過(guò)點(diǎn)的直線交直線于點(diǎn),連接,當(dāng)直線與直線的一個(gè)夾角等于的3倍時(shí),請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn).
(1)求點(diǎn)、、的坐標(biāo);
(2)若點(diǎn)在軸的上方,以、、為頂點(diǎn)的三角形與全等,平移這條拋物線,使平移后的拋物線經(jīng)過(guò)點(diǎn)與點(diǎn),請(qǐng)你寫(xiě)出平移過(guò)程,并說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】大雁塔是現(xiàn)存最早規(guī)模最大的唐代四方樓閣式磚塔,被國(guó)務(wù)院批準(zhǔn)列人第一批全國(guó)重點(diǎn)文物保護(hù)單位,某校社會(huì)實(shí)踐小組為了測(cè)量大雁塔的高度,在地面上處垂直于地面豎立了高度為米的標(biāo)桿,這時(shí)地面上的點(diǎn),標(biāo)桿的頂端點(diǎn),古塔的塔尖點(diǎn)正好在同一直線上,測(cè)得米,將標(biāo)桿向后平移到點(diǎn)處,這時(shí)地面上的點(diǎn),標(biāo)桿的頂端點(diǎn),古塔的塔尖點(diǎn)正好在同一直線上(點(diǎn),點(diǎn),點(diǎn),點(diǎn)與古塔底處的點(diǎn)在同一直線上) ,這時(shí)測(cè)得米,米,請(qǐng)你根據(jù)以上數(shù)據(jù),計(jì)算古塔的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC為等邊三角形,O為BC的中點(diǎn),作⊙O與AC相切于點(diǎn)D.
(1)求證:AB與⊙O相切;
(2)延長(zhǎng)AC到E,使得CE=AC,連接BE交⊙O與點(diǎn)F、M,若AB=4,求FM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀,我們可以用換元法解簡(jiǎn)單的高次方程,解方程x4﹣3x2+2=0時(shí),可設(shè)y=x2,則原方程可比為y2+3y+2=0,解之得y1=2,y2=1,當(dāng)y1=2時(shí),則x2=2,即x1=,x2=﹣;當(dāng)y2=1時(shí),即x2=1,則x1=1,x2=﹣1,故原方程的解為x1=,x2=﹣,x3=1,x4=﹣1,仿照上面完成下面解答:
(1)已知方程(2x2+1)2+2x2﹣3=0,設(shè)y=2x2+1,則原方程可化為_______.
(2)仿照上述解法解方程:(x2﹣2x)2﹣3x2+6x=0.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com