【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系.
(1)如圖1,若AB∥CD,點(diǎn)P在AB、CD內(nèi)部,∠B=50°,∠D=30°,求∠BPD.
(2)如圖2,將點(diǎn)P移到AB、CD外部,則∠BPD、∠B、∠D之間有何數(shù)量關(guān)系?(不需證明)
(3)如圖3,寫出∠BPD﹑∠B﹑∠D﹑∠BQD之間的數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論.
(4)如圖4,求出∠A+∠B+∠C+∠D+∠E+∠F的度數(shù).
【答案】(1)80°;(2)∠B=∠BPD+∠D,證明見(jiàn)解析;(3)∠BPD=∠BQD+∠B+∠D;(4)360°
【解答】
【解析】試題(1)過(guò)點(diǎn)P作PE∥AB,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠B=∠1,∠D=∠2,再根據(jù)∠BPD=∠1+∠2代入數(shù)據(jù)計(jì)算即可得解;(2)根據(jù)根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠BOD=∠B,然后根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式整理即可得解;(3)連接QP并延長(zhǎng),再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和解答;(4)根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可得∠A+∠E=∠1,∠B+∠F=∠2,再根據(jù)四邊形的內(nèi)角和定理列式計(jì)算即可得解.
試題解析:
解:(1)過(guò)點(diǎn)P作PE∥AB,
∵AB∥CD,
∴AB∥EP∥CD,
∴∠B=∠1=50°,∠D=∠2=30°,
∴∠BPD=80°;
(2)∠B=∠BPD+∠D.
(3)如圖,連接QP并延長(zhǎng),
結(jié)論:∠BPD=∠BQD+∠B+∠D.
理由:略
(4)如圖,由三角形的外角性質(zhì),∠A+∠E=∠1,∠B+∠F=∠2,
∵∠1+∠2+∠C+∠D=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°.
點(diǎn)晴:本題考查了平行線的性質(zhì),三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),熟記性質(zhì)并作出輔助線是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC與DE相交于點(diǎn)F,連接CD,EB.
(1)圖中還有幾對(duì)全等三角形,請(qǐng)你一一列舉;
(2)求證:CF=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1是一臺(tái)放置在水平桌面上的筆記本電腦,將其側(cè)面抽象成如圖2所示的幾何圖形,若顯示屏所在面的側(cè)邊AO與鍵盤所在面的側(cè)邊BO長(zhǎng)均為24cm,點(diǎn)P為眼睛所在位置,D為AO的中點(diǎn),連接PD,當(dāng)PD⊥AO時(shí),稱點(diǎn)P為“最佳視角點(diǎn)”,作PC⊥BC,垂足C在OB的延長(zhǎng)線上,且BC=12cm.
(1)當(dāng)PA=45cm時(shí),求PC的長(zhǎng);
(2)若∠AOC=120°時(shí),“最佳視角點(diǎn)”P在直線PC上的位置會(huì)發(fā)生什么變化?此時(shí)PC的長(zhǎng)是多少?請(qǐng)通過(guò)計(jì)算說(shuō)明.(結(jié)果精確到0.1cm,可用科學(xué)計(jì)算器,參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】宿州市高新區(qū)某電子電路板廠到安徽大學(xué)從2018年應(yīng)屆畢業(yè)生中招聘公司職員,對(duì)應(yīng)聘者的專業(yè)知識(shí)、英語(yǔ)水平、參加社會(huì)實(shí)踐與社團(tuán)活動(dòng)等三項(xiàng)進(jìn)行測(cè)試或成果認(rèn)定,三項(xiàng)的得分滿分都為100分,三項(xiàng)的分?jǐn)?shù)分別按5∶3∶2的比例記入每人的最后總分,有4位應(yīng)聘者的得分如下表所示.
項(xiàng)目 | 專業(yè)知識(shí) | 英語(yǔ)水平 | 參加社會(huì)實(shí)踐與 社團(tuán)活動(dòng)等 |
甲 | 85 | 85 | 90 |
乙 | 85 | 85 | 70 |
丙 | 80 | 90 | 70 |
丁 | 90 | 90 | 50 |
(1)分別算出4位應(yīng)聘者的總分;
(2)表中四人“專業(yè)知識(shí)”的平均分為85分,方差為12.5,四人“英語(yǔ)水平”的平均分為87.5分,方差為6.25,請(qǐng)你求出四人“參加社會(huì)實(shí)踐與社團(tuán)活動(dòng)等”的平均分及方差;
(3)分析(1)和(2)中的有關(guān)數(shù)據(jù),你對(duì)大學(xué)生應(yīng)聘者有何建議?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】體育中考前,抽樣調(diào)查了九年級(jí)學(xué)生的“1分鐘跳繩”成績(jī),并繪制成了下面的頻數(shù)分布直方圖(每小組含最小值,不含最大值)和扇形圖.
(1)補(bǔ)全頻數(shù)分布直方圖;
(2)扇形圖中m=;
(3)若“1分鐘跳繩”成績(jī)大于或等于140次為優(yōu)秀,則估計(jì)全市九年級(jí)5900名學(xué)生中“1分鐘跳繩”成績(jī)?yōu)閮?yōu)秀的大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】放風(fēng)箏是大家喜愛(ài)的一種運(yùn)動(dòng),星期天的上午小明在市政府廣場(chǎng)上放風(fēng)箏.如圖,他在A處不小心讓風(fēng)箏掛在了一棵樹(shù)梢上,風(fēng)箏固定在了D處,此時(shí)風(fēng)箏AD與水平線的夾角為30°,為了便于觀察,小明迅速向前邊移動(dòng),收線到達(dá)了離A處10米的B處,此時(shí)風(fēng)箏線BD與水平線的夾角為45°.已知點(diǎn)A,B,C在同一條水平直線上,請(qǐng)你求出小明此時(shí)所收回的風(fēng)箏線的長(zhǎng)度是多少米?(風(fēng)箏線AD,BD均為線段, ≈1.414, ≈1.732,最后結(jié)果精確到1米).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB,CD相交于點(diǎn)O,OE⊥AB于O,若∠BOD=40°,則不正確的結(jié)論是( )
A.∠AOC=40° B.∠COE=130° C.∠EOD=40° D.∠BOE=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中有三個(gè)點(diǎn)A(1,﹣1)、B(﹣1,﹣1)、C(0,1),點(diǎn)P(0,2)關(guān)于A的對(duì)稱點(diǎn)為P1,P1關(guān)于B的對(duì)稱點(diǎn)為P2,P2關(guān)于C的對(duì)稱點(diǎn)為P3,按此規(guī)律繼續(xù)以A、B、C為對(duì)稱中心重復(fù)前面的操作,依次得到P4、P5、P6,…,則點(diǎn)P2018的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在平行四邊形ABCD中,點(diǎn)O是邊AD的中點(diǎn),連接CO并延長(zhǎng)交BA延長(zhǎng)線于點(diǎn)E,連接ED、AC.
(1)如圖1,求證:四邊形AEDC是平行四邊形;
(2)如圖2,若四邊形AEDC是矩形,請(qǐng)?zhí)骄俊?/span>COD與∠B的數(shù)量關(guān)系,寫出你的探究結(jié)論,并加以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com