【題目】體育中考前,抽樣調(diào)查了九年級學(xué)生的“1分鐘跳繩”成績,并繪制成了下面的頻數(shù)分布直方圖(每小組含最小值,不含最大值)和扇形圖.
(1)補(bǔ)全頻數(shù)分布直方圖;
(2)扇形圖中m=;
(3)若“1分鐘跳繩”成績大于或等于140次為優(yōu)秀,則估計全市九年級5900名學(xué)生中“1分鐘跳繩”成績?yōu)閮?yōu)秀的大約有多少人?
【答案】
(1)解:直方圖如下:
(2)84
(3)解:績?yōu)閮?yōu)秀的大約有:5900× =2056(人)
【解析】解:(1)由直方圖和扇形圖可知,A組人數(shù)是6人,占10%, 則總?cè)藬?shù):6÷10%=60,
D組人數(shù)為:60﹣6﹣14﹣19﹣5=16;(2)m=360°× =84°.
故答案是:84;
平均數(shù)是: =130;
(1)首先由第二小組有10人,占20%,可求得總?cè)藬?shù),再根據(jù)各小組頻數(shù)之和等于數(shù)據(jù)總數(shù)求得第四小組的人數(shù),作出統(tǒng)計圖;(2)360°乘以B組所占的比例,即可求出對應(yīng)扇形圓心角的度數(shù);(3)求出樣本中成績優(yōu)秀的人數(shù)所占的百分比,用樣本估計總體即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=4cm,點D是斜邊AB的中點,點E從點B出發(fā)以1cm/s的速度向點C運動,點F同時從點C出發(fā)以一定的速度沿射線CA方向運動,規(guī)定:當(dāng)點E到終點C時停止運動;設(shè)運動的時間為x秒,連接DE、DF.
(1)填空:S△ABC= cm2;
(2)當(dāng)x=1且點F運動的速度也是1cm/s時,求證:DE=DF;
(3)若動點F以3cm/s的速度沿射線CA方向運動;在點E、點F運動過程中,如果有某個時間x,使得△ADF的面積與△BDE的面積存在兩倍關(guān)系,請你直接寫出時間x的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若反比例函數(shù)y=與一次函數(shù)y=2x-4的圖象都經(jīng)過點A(a,2).
(1)求反比例函數(shù)y=的表達(dá)式;
(2)當(dāng)反比例函數(shù)y=的值大于一次函數(shù)y=2x-4的值時,求自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點B(6,0)的直線AB與直線OA相交于點A(4,2),動點M沿路線O→A→C運動.
(1)求直線AB的解析式.
(2)求△OAC的面積.
(3)當(dāng)△OMC的面積是△OAC的面積的時,求出這時點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一根繩子對折成一條線段AB,在線段AB取一點P,使AP=,從P處把繩子剪斷,若剪斷后的三段繩子中最長的一段為30cm,則繩子的原長為______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系.
(1)如圖1,若AB∥CD,點P在AB、CD內(nèi)部,∠B=50°,∠D=30°,求∠BPD.
(2)如圖2,將點P移到AB、CD外部,則∠BPD、∠B、∠D之間有何數(shù)量關(guān)系?(不需證明)
(3)如圖3,寫出∠BPD﹑∠B﹑∠D﹑∠BQD之間的數(shù)量關(guān)系?請證明你的結(jié)論.
(4)如圖4,求出∠A+∠B+∠C+∠D+∠E+∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=90°,OB=2,點A是直線OM上的一個動點,連結(jié)AB,作∠MAB與∠ABN的角平分線AF與BF,兩角平分線所在的直線交于點F,求點A在運動過程中線段BF的最小值為 ______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,一元二次方程x2=﹣1沒有實數(shù)根,即不存在一個實數(shù)的平方等于﹣1.若我們規(guī)定一個新數(shù)“i”,使其滿足i2=﹣1(即方程x2=﹣1有一個根為i).并且進(jìn)一步規(guī)定:一切實數(shù)可以與新數(shù)進(jìn)行四則運算,且原有運算律和運算法則仍然成立,于是有i1=i,i2=﹣1,i3=i2i=(﹣1)i=﹣i,i4=(i2)2=(﹣1)2=1,從而對于任意正整數(shù)n,我們可以得到i4n+1=i4ni=(i4)ni=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1.那么i+i2+i3+i4+…+i2012+i2013的值為( )
A. 0 B. i C. ﹣1 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=90°,矩形ABCD的頂點A、B分別在邊OM,ON上,當(dāng)B在邊ON上運動時,A隨之在OM上運動,矩形ABCD的形狀保持不變,其中AB=2,BC=1,運動過程中,點D到點O的最大距離為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com