【題目】如圖,在⊙O中,半徑OA⊥OB,過(guò)點(diǎn)OA的中點(diǎn)C作FD∥OB交⊙O于D、F兩點(diǎn),且CD= ,以O(shè)為圓心,OC為半徑作 ,交OB于E點(diǎn).
(1)求⊙O的半徑OA的長(zhǎng);
(2)計(jì)算陰影部分的面積.
【答案】
(1)解:連接OD,
∵OA⊥OB,
∴∠AOB=90°,
∵CD∥OB,
∴∠OCD=90°,
在RT△OCD中,∵C是AO中點(diǎn),CD= ,
∴OD=2CO,設(shè)OC=x,
∴x2+( )2=(2x)2,
∴x=1,
∴OD=2,
∴⊙O的半徑為2.
(2)解:∵sin∠CDO= = ,
∴∠CDO=30°,
∵FD∥OB,
∴∠DOB=∠ODC=30°,
∴S陰=S△CDO+S扇形OBD﹣S扇形OCE
= × + ﹣
= + .
【解析】(1)由30°角的性質(zhì)可列方程,求出半徑;(2)陰影部分面積S陰=S△CDO+S扇形OBD﹣S扇形OCE,分別計(jì)算各部分面積即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解垂徑定理的相關(guān)知識(shí),掌握垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧,以及對(duì)扇形面積計(jì)算公式的理解,了解在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠1=∠2,AC=AD,請(qǐng)?jiān)黾右粋(gè)條件,使△ABC≌△AED,你添加的條件是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】黃石市在創(chuàng)建國(guó)家級(jí)文明衛(wèi)生城市中,綠化檔次不斷提升.某校計(jì)劃購(gòu)進(jìn)A,B兩種樹(shù)木共100棵進(jìn)行校園綠化升級(jí),經(jīng)市場(chǎng)調(diào)查:購(gòu)買(mǎi)A種樹(shù)木2棵,B種樹(shù)木5棵,共需600元;購(gòu)買(mǎi)A種樹(shù)木3棵,B種樹(shù)木1棵,共需380元.
(1)求A種,B種樹(shù)木每棵各多少元?
(2)因布局需要,購(gòu)買(mǎi)A種樹(shù)木的數(shù)量不少于B種樹(shù)木數(shù)量的3倍.學(xué)校與中標(biāo)公司簽訂的合同中規(guī)定:在市場(chǎng)價(jià)格不變的情況下(不考慮其他因素),實(shí)際付款總金額按市場(chǎng)價(jià)九折優(yōu)惠,請(qǐng)?jiān)O(shè)計(jì)一種購(gòu)買(mǎi)樹(shù)木的方案,使實(shí)際所花費(fèi)用最省,并求出最省的費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對(duì)應(yīng)值如下表:
X | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列結(jié)論:
①ac<0;
②當(dāng)x>1時(shí),y的值隨x值的增大而減。
③3是方程ax2+(b﹣1)x+c=0的一個(gè)根;
④當(dāng)﹣1<x<3時(shí),ax2+(b﹣1)x+c>0.
其中正確的個(gè)數(shù)為( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校學(xué)生的身高情況,隨機(jī)抽取該校男生、女生進(jìn)行抽樣調(diào)查.已知抽取的樣本中,男生、女生的人數(shù)相同,利用所得數(shù)據(jù)繪制成如下統(tǒng)計(jì)圖表(單位:cm):
A | x<155 |
B | 155≤x<160 |
C | 160≤x<165 |
D | 165≤x<170 |
E | x≥170 |
根據(jù)圖表提供的信息,樣本中,身高在160≤x<170之間的女生人數(shù)為( )
A. 8 B. 6 C. 14 D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是菱形ABCD邊上的一動(dòng)點(diǎn),它從點(diǎn)A出發(fā)沿著A→B→C→D路徑勻速運(yùn)動(dòng)到點(diǎn)D,設(shè)△PAD的面積為y,P點(diǎn)的運(yùn)動(dòng)時(shí)間為x,則y關(guān)于x的函數(shù)圖象大致為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a≠0)與x軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C,直線y=kx+n(k≠0)經(jīng)過(guò)B,C兩點(diǎn),已知A(1,0),C(0,3),且BC=5.
(1)分別求直線BC和拋物線的解析式(關(guān)系式);
(2)在拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)P,使得以B,C,P三點(diǎn)為頂點(diǎn)的三角形是直角三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 “低碳生活,綠色出行”是我們倡導(dǎo)的一種生活方式,有關(guān)部門(mén)抽樣調(diào)查了某單位員工上下班的交通方式,繪制了如下統(tǒng)計(jì)圖:
(1)填空:樣本中的總?cè)藬?shù)為 ;開(kāi)私家車(chē)的人數(shù)m= ;扇形統(tǒng)計(jì)圖中“騎自行車(chē)”所在扇形的圓心角為 度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該單位共有2000人,積極踐行這種生活方式,越來(lái)越多的人上下班由開(kāi)私家車(chē)改為騎自行車(chē).若步行,坐公交車(chē)上下班的人數(shù)保持不變,問(wèn)原來(lái)開(kāi)私家車(chē)的人中至少有多少人改為騎自行車(chē),才能使騎自行車(chē)的人數(shù)不低于開(kāi)私家車(chē)的人數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在4個(gè)均由16個(gè)小正方形組成的網(wǎng)格正方形中,各有一個(gè)格點(diǎn)三角形,那么這4個(gè)正方形中,與眾不同的是_________,不同之處:______________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com