【題目】如果a﹣12a+7互為相反數(shù),則|a+2|=_____

【答案】0

【解析】

根據(jù)相反數(shù)的定義即可求出列出方程.

由題意可知:a-1+2a+7=0,

3a=-6,

a=-2,

∴原式=|0|=0,

故答案為:0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九(3)班學(xué)生參加學(xué)校組織的綠色奧運知識競賽,老師將學(xué)生的成績按10分的組距分段,統(tǒng)計每個分數(shù)段出現(xiàn)的頻數(shù),填入頻數(shù)分布表,并繪制頻數(shù)分布直方圖.

九(3)班綠色奧運知識競賽成績頻數(shù)分布表:

分數(shù)段(分)

49.559.5

59.569.5

69.579.5

79.589.5

89.599.5

組中值(分)

54.5

64.5

74.5

84.5

94.5

頻數(shù)

a

9

10

14

5

所占百分比

5%

22.5%

25.0%

35.0%

b

1)頻數(shù)分布表中a=______,b=______;

2)畫頻數(shù)分布直方圖;

3)學(xué)校設(shè)定成績在69.5分以上的學(xué)生將獲得一等獎或二等獎,一等獎獎勵作業(yè)本15本及獎金50元,二等獎獎勵作業(yè)本10本及獎金30元,已知這部分學(xué)生共獲得作業(yè)本335本,請你求出他們共獲得的獎金.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了抓住商機,某商店決定購進A、B兩種藝術(shù)節(jié)紀(jì)念品.若購進A種紀(jì)念品8件, B種紀(jì)念品3件,需要950元;若購進A種紀(jì)念品5件,B種紀(jì)念品6件,需要800元.

(1)求購進A、B兩種紀(jì)念品每件各需多少元?

(2)若該商店決定購進這兩種紀(jì)念品共100件,考慮市場需求和資金周轉(zhuǎn),用于購買這100件紀(jì)念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進貨方案?

(3)若銷售每件A種紀(jì)念品可獲利潤20元,每件B種紀(jì)念品可獲利潤30元,在第(2)問的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲倉庫有水泥100噸,乙倉庫有水泥80噸,要全部運動A、B兩工地,已知A工地需要70噸,B工地需要110噸,甲倉庫運到A、B兩工地的運費分別是140/噸、150/噸,乙倉庫運到A、B兩工地的運費分別是200/噸、80/噸,本次運送水泥總運費需要25900元,問甲倉庫運到A工地水泥的噸數(shù).(運費:元/噸,表示運送每噸水泥所需的人民幣)

1)設(shè)甲倉庫運到A工地水泥的噸數(shù)為x噸,請在下面表格中用x表示出其他未知量.

甲倉庫

乙倉庫

A工地

x

   

B工地

 

x+10

2)用含x的代數(shù)式表示運送甲倉庫100噸水泥的運費為   元.(寫出化簡后的結(jié)果)

3)請根據(jù)題目中的等量關(guān)系和以上的分析列出方程.(只列出方程即可,寫成ax+b=0的形式,不用解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算(-3x2y2)2(2xy)3÷(xy)2=____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校計劃購買A、B兩種品牌的顯示器共120臺,A、B兩種品牌顯示器的單價分別為800元和1000元,設(shè)購買A品牌顯示器x臺,若學(xué)校購買這兩種品牌顯示器的總費用為110000元,那么A、B兩種品牌的顯示器各購買了多少臺?根據(jù)題目信息完成上面的表格,并列出方程,列出的方程:   

項目品牌

單價/

購買數(shù)量/

購買費用/

A

800

x

  

B

1000

  

  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖(1)是我們常見的“箭頭圖”,其中隱藏著哪些數(shù)學(xué)知識呢?下面請你解決以下問題:

(1)觀察如圖(1)“箭頭圖”,試探究BDC與∠A、∠B、∠C之間大小的關(guān)系,并說明理由;

(2)請你直接利用以上結(jié)論,回答下列兩個問題:

如圖(2),把一塊三角板XYZ放置在ABC上,使其兩條直角邊XY、XZ恰好經(jīng)過點B、C.若A=50°,則∠ABX+∠ACX=   ;

如圖(3),∠ABD,∠ACD的五等分線分別相交于點G1、G2、G3、G4,若∠BDC=135°,∠BG1C=67°,求A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為方便市民出行,減輕城市中心交通壓力,佛山市掀起新一輪城市基礎(chǔ)設(shè)施建設(shè)高潮,動工修建貫穿東西、南北的地鐵2、3號線,已知修建地鐵2號線32千米和3號線66千米共投資581.6億元;且3號線每千米的平均造價比2號線每千米的平均造價多0.2億元.

(1)求2號線、3號線每千米的平均造價分別是多少億元?

(2)除地鐵1、2、3號線外,佛山市政府規(guī)劃未來五年,還要再建108千米的地鐵線網(wǎng).據(jù)預(yù)算,這168千米地鐵線網(wǎng)每千米的平均造價是3號線每千米的平均造價的1.2倍,則還需投資多少億元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列能判定AB∥CD的條件有( )個.

1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案