【題目】如圖一次函數(shù)y=kx+b的圖象與反比例函數(shù) (x > 0)的圖象交于A(2,–l),B(,n)兩點,直線y=2y軸交于點C

(1)求反比例函數(shù)的解析式;

(2)求一次函數(shù)的解析式;

(3)ABC的面積.

【答案】(1)反比例函數(shù)的解析式為 y= –;(2)一次函數(shù)為y=2x–5;(3

【解析】

1)將A代入解析式可求解析式;

2)先求出B再代入解析式可求解析式;
3)設(shè)一次函數(shù)解析式y=2x-5圖象交y軸為點D,由SABC=SACD-SBCD,可求SABC

1)∵ 過點A2,-1

m= –2

∴反比例函數(shù)的解析式為 y= –

2 ∵點Bn)在y= –

B,– 4

y=kx+b過點A2–1),B,– 4

∴一次函數(shù)為y=2x–5

3)設(shè)一次函數(shù)解析式y=2x-5圖象交y軸為點D


D0,-5
∵直線y=2y軸交于點C
C0,2
SABC=SACD-SBCD
SABC=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的口袋里裝有分別標有漢字、、、的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻再摸球.

1)若從中任取一個球,求摸出球上的漢字剛好是的概率;

2)甲從中任取一個球,不放回,再從中任取一球,請用樹狀圖或列表法,求甲取出的兩個球上的漢字恰能組成美麗寶安的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一個三角形一條邊的平方等于另兩條邊的乘積,我們稱這個三角形是比例三角形.

1)已知△ABC是比例三角形,AB1,BC2,求AC的長.

2)如圖1,在四邊形ABCD中,ABAD,對角線BD平分∠ABC,∠BAC=∠ADC

求證:△ABC是比例三角形

ABDC,如圖2,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:在一個三角形中,若存在兩條邊xy,使得yx2,則稱此三角形為平方三角形,x稱為平方邊.

1若等邊三角形為平方三角形,則面積為   命題;有一個角為30°且有一條直角邊為2的直角三角形是平方三角形   命題;(填

2)若a,b,c是平方三角形的三條邊,平方邊a2,若三角形中存在一個角為60°,求c的值;

3)如圖,在ABC中,DBC上一點.

①若∠CAD=∠BCD1,求證,ABC是平方三角形;

②若∠C90°,BD1,ACmCDn,求tanDAB.(用含m,n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過A(3,0),B(1,0),C(0,3)三點,其頂點為D,對稱軸是直線l,l與x軸交于點H.

(1)求該拋物線的解析式;

(2)若點P是該拋物線對稱軸l上的一個動點,求PBC周長的最小值;

(3)如圖(2),若E是線段AD上的一個動點( E與A、D不重合),過E點作平行于y軸的直線交拋物線于點F,交x軸于點G,設(shè)點E的橫坐標為m,ADF的面積為S.

求S與m的函數(shù)關(guān)系式;

S是否存在最大值?若存在,求出最大值及此時點E的坐標; 若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:ABC在直角坐標平面內(nèi),三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).

(1)畫出ABC向下平移4個單位長度得到的A1B1C1,點C1的坐標是  ;

(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出A2B2C2,使A2B2C2ABC位似,且位似比為2:1,點C2的坐標是   ;

(3)A2B2C2的面積是   平方單位.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,拋物線與直線交于點和點,與軸交于點.

1)求出直線和拋物線的函數(shù)表達式;

2)在圖1中,平移線段,恰好可以使得點落在直線上,并且點落在拋物線上,點、對應(yīng)的點分別為、,求此時點的坐標(點在第四象限);

3)如圖2,在(2)的條件下,在拋物線上是否存在點(不與點重合),使得面積與面積相等?若存在,直接寫出點的坐標;若不存在,請說明理由.(點在第一象限)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的對角線AC,BD交于點OCE平分∠BCDAB于點E,交BD于點F,且∠ABC60°AB2BC,連接OE.下列結(jié)論:①∠ACD30°;SABCDAC·BC;OEAC6;SOCF2SOEF.成立的個數(shù)有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,把一個直角三角尺ACB繞著30°角的頂點B順時針旋轉(zhuǎn),使得點A與CB的延長線上的點E重合.

1三角尺旋轉(zhuǎn)了

2連接CD,試判斷CBD的形狀;

3BDC的度數(shù)

查看答案和解析>>

同步練習冊答案