【題目】如圖,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)的圖象交于第二、四象限內(nèi)的A,B兩點(diǎn),與軸交于C點(diǎn),過點(diǎn)AAH軸,垂足為H,OH=3,tanAOH=,點(diǎn)B的坐標(biāo)為(,﹣2).

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)求AOB的面積.

【答案】(1)反比例函數(shù)解析式為y=-.一次函數(shù)的解析式為y=-x+1.(2)

【解析】

(1)由OHtan∠AOH的值即可求出點(diǎn)A的坐標(biāo),利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出k值和點(diǎn)B的坐標(biāo),再根據(jù)點(diǎn)A、B的坐標(biāo)利用待定系數(shù)法即可求出直線AB的解析式; (2)將x=0代入直線AB的解析式中求出y值,由此即可得出OC的長度,再根據(jù)三角形的面積公式即可求出△AOC的面積.

1)OH=3,tanAOH=,
AH=OHtanAOH=2,
∴點(diǎn)A的坐標(biāo)為(-2,3).
∵點(diǎn)A在反比例函數(shù)y=(k≠0)的圖象上,
k=-2×3=-6,
∴反比例函數(shù)解析式為y=-
∵點(diǎn)B(m,-2)在反比例函數(shù)y=-的圖象上,
m=3,
∴點(diǎn)B的坐標(biāo)為(3,-2).
A(-2,3)、B(3,-2)代入y=ax+b,
,解得: ,

∴一次函數(shù)的解析式為y=-x+1.
(2)當(dāng)x=0時,y=-x+1=1,
∴點(diǎn)C的坐標(biāo)為(0,1),
OC=1,
SAOB=SAOC+SBOC=×1×2+×1×3=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把彈簧的上端固定,在其下端掛物體,下表是測得的彈簧長度與所掛物體的質(zhì)量的一組對應(yīng)值:

0

1

2

3

4

5

15

155

16

165

17

175

1)表中反映了哪兩個變量之間的關(guān)系?哪個是自變量?哪個是因變量?

2)彈簧的原長是_______,物體每增加,彈簧的長度增加_________

3)請你估測一下當(dāng)所掛物體為時,彈簧的長度是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校想了解學(xué)生每周的課外閱讀時間情況,隨機(jī)調(diào)查了部分學(xué)生,對學(xué)生每周的課外閱讀時間x單位:小時進(jìn)行分組整理,并繪制了如圖所示的不完整的頻數(shù)分別直方圖和扇形統(tǒng)計(jì)圖:

根據(jù)圖中提供的信息,解答下列問題:

1補(bǔ)全頻數(shù)分布直方圖

2求扇形統(tǒng)計(jì)圖中m的值和E組對應(yīng)的圓心角度數(shù)

3請估計(jì)該校3000名學(xué)生中每周的課外閱讀時間不小于6小時的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(2k-1)x+k2+1=0,如果方程的兩根之和等于兩根之積,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,A=40°,ABC的外角∠CBD的平分線BEAC的延長線于點(diǎn)E.

(1)求∠CBE的度數(shù);

(2)過點(diǎn)DDFBE,交AC的延長線于點(diǎn)F,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c軸相交于A、B兩點(diǎn),與軸相交于點(diǎn)C,OA=1,OC=3,連接BC.

(1)求b的值;

(2)點(diǎn)D是直線BC上方拋物線一動點(diǎn)(點(diǎn)B、C除外),當(dāng)BCD的面積取得最大值時,在軸上是否存在一點(diǎn)P,使得|PB﹣PD|最大,若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

(3)在(2)的條件下,若在平面上存在點(diǎn)Q,使得以點(diǎn)B、C、D、Q為頂點(diǎn)的四邊形為平行四邊形,請直接寫出點(diǎn)Q坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用一條長為18cm的細(xì)繩圍成一個等腰三角形.

(1)如果腰長是底邊長的2倍,求三角形各邊的長;

(2)能圍成有一邊的長是4cm的等腰三角形嗎?若能,求出其他兩邊的長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點(diǎn)為平面內(nèi)一點(diǎn),

1)如圖1,直接寫出之間的數(shù)量關(guān)系   ;

2)如圖2,過點(diǎn)于點(diǎn),求證:

3)如圖3,在(2)問的條件下,點(diǎn)上,連接、、平分,平分,若,,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形ABCD中,點(diǎn)E、F分別是AB、CD的中點(diǎn),過點(diǎn)EAB的垂線,過點(diǎn)FCD的垂線,兩垂線交于點(diǎn)G,連接AGBG、CGDG,且∠AGD∠BGC

1)求證:ADBC;

2)求證:△AGD∽△EGF

3)如圖2,若AD、BC所在直線互相垂直,求的值.

查看答案和解析>>

同步練習(xí)冊答案