【題目】如圖,直線軸交于點,直線軸交于點,且經(jīng)過點,直線,交于點

1)求的值;

2)求直線的解析式;

3)根據(jù)圖象,直接寫出的解集.

4)求的面積.

【答案】12;(2y=x+4;(3;(43

【解析】

1)把點C的坐標(biāo)代入直線的解析式求出m的值.

2)根據(jù)點B、C的坐標(biāo),利用待定系數(shù)法求一次函數(shù)解析式解答;

3)觀察圖象,可直接寫出的解集.

4)計算出D,A的坐標(biāo),得出AD的長度,以點C縱坐標(biāo)作高,用三角形面積公式即可求得結(jié)果.

(1))∵點C在直線l1:y=2x2上,

2=2m2,m=2

∴點C的坐標(biāo)為(2,2);

2)∵點C(2,2)、B(3,1)在直線l2上,

,解之得:

∴直線l2的解析式為y=x+4

(3)觀察圖象:

當(dāng)時,

時,

的解集是:

4)∵D軸交點

∴當(dāng)時,,解得

D1,0

∵A為軸交點

∴當(dāng)時,,解得

A4,0)

AD=3

C2,2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,設(shè)甲、乙、丙、丁分別表示△ABC,△ACD,△EFG,△EGH.已知∠ACB=∠CAD=∠EFG=∠EGH70°,∠BAC=∠ACD=∠EGF=∠EHG50°,則敘述正確的是(

A.甲、乙全等,丙、丁全等B.甲、乙全等,丙、丁不全等

C.甲、乙不全等,丙、丁全等D.甲、乙不全等,丙、丁不全等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完全平方公式:(a±b2a2±2ab+b2適當(dāng)?shù)淖冃,可以解決很多的數(shù)學(xué)問題.

例如:若a+b3,ab1,求a2+b2的值.

解:因為a+b3ab1

所以(a+b29,2ab2

所以a2+b2+2ab9,2ab2

a2+b27

根據(jù)上面的解題思路與方法,解決下列問題:

1)若(7x)(x4)=1,求(7x2+x42的值;

2)如圖,點C是線段AB上的一點,以ACBC為邊向兩邊作正方形,設(shè)AB5,兩正方形的面積和S1+S217,求圖中陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,D是邊BC上的一點,DEAB,DFAC,垂足分別是E、F,EFBC

1)求證:BDE≌△CDF

2)若BC=2AD,求證:四邊形AEDF是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD,P是對角線AC上任意一點,EAD上的點,且∠EPB=90°,PMADPNAB

1)求證:四邊形PMAN是正方形;

2)求證:EM=BN

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“大美濕地,水韻鹽城”.某校數(shù)學(xué)興趣小組就“最想去的鹽城市旅游景點”隨機(jī)調(diào)查了本校部分學(xué)生,要求每位同學(xué)選擇且只能選擇一個最想去的景點,下面是根據(jù)調(diào)查結(jié)果進(jìn)行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計圖:

請根據(jù)圖中提供的信息,解答下列問題:

(1)求被調(diào)查的學(xué)生總?cè)藬?shù);

(2)補(bǔ)全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);

(3)若該校共有800名學(xué)生,請估計“最想去景點B“的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊△ABC中,點EAB上,點DCB延長線上,且ED=EC.

(1)當(dāng)點EAB中點時,如圖①,AE DB(填“﹥”“﹤”或“=”),并說明理由;

(2)當(dāng)點EAB上任意一點時,如圖②,AE DB(填“﹥”“﹤”或“=”),并說明理由;(提示:過點EEFBC,交AC于點F

(3)在等邊△ABC中,點E在直線AB上,點D在直線BC上,且ED=EC.若△ABC的邊長為1AE=2,請你畫出圖形,并直接寫出相應(yīng)的CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,直線y=﹣x+b與坐標(biāo)軸交于C,D兩點,直線AB與坐標(biāo)軸交于A,B兩點,線段OA,OC的長是方程x2﹣3x+2=0的兩個根(OA>OC).

(1)求點A,C的坐標(biāo);

(2)直線AB與直線CD交于點E,若點E是線段AB的中點,反比例函數(shù)y=(k≠0)的圖象的一個分支經(jīng)過點E,求k的值;

(3)在(2)的條件下,點M在直線CD上,坐標(biāo)平面內(nèi)是否存在點N,使以點B,E,M,N為頂點的四邊形是菱形?若存在,請直接寫出滿足條件的點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“五·一車展期間,某汽車經(jīng)銷商推出四種型號的轎車共1000輛進(jìn)行展銷,型號轎車銷售的成交率(售出數(shù)量展銷數(shù)量)為50%,圖1是各型號參展轎車的百分比,圖2是已售出的各型號轎車的數(shù)量,(兩幅統(tǒng)計圖尚不完整)

1)參加展銷的型號轎車有多少輛?

2)請你將圖2的統(tǒng)計圖補(bǔ)充完整.

查看答案和解析>>

同步練習(xí)冊答案