【題目】如圖,直線:與軸交于點,直線:與軸交于點,且經(jīng)過點,直線,交于點.
(1)求的值;
(2)求直線的解析式;
(3)根據(jù)圖象,直接寫出的解集.
(4)求的面積.
【答案】(1)2;(2)y=x+4;(3);(4)3
【解析】
(1)把點C的坐標(biāo)代入直線的解析式求出m的值.
(2)根據(jù)點B、C的坐標(biāo),利用待定系數(shù)法求一次函數(shù)解析式解答;
(3)觀察圖象,可直接寫出的解集.
(4)計算出D,A的坐標(biāo),得出AD的長度,以點C縱坐標(biāo)作高,用三角形面積公式即可求得結(jié)果.
(1))∵點C在直線l1:y=2x2上,
∴2=2m2,m=2,
∴點C的坐標(biāo)為(2,2);
(2)∵點C(2,2)、B(3,1)在直線l2上,
∴,解之得:,
∴直線l2的解析式為y=x+4.
(3)觀察圖象:
當(dāng)時,
時,
∴的解集是:.
(4)∵D為與軸交點
∴當(dāng)時,,解得
∴D(1,0)
∵A為與軸交點
∴當(dāng)時,,解得
∴A(4,0)
∴AD=3
∵C(2,2)
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,設(shè)甲、乙、丙、丁分別表示△ABC,△ACD,△EFG,△EGH.已知∠ACB=∠CAD=∠EFG=∠EGH=70°,∠BAC=∠ACD=∠EGF=∠EHG=50°,則敘述正確的是( )
A.甲、乙全等,丙、丁全等B.甲、乙全等,丙、丁不全等
C.甲、乙不全等,丙、丁全等D.甲、乙不全等,丙、丁不全等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完全平方公式:(a±b)2=a2±2ab+b2適當(dāng)?shù)淖冃,可以解決很多的數(shù)學(xué)問題.
例如:若a+b=3,ab=1,求a2+b2的值.
解:因為a+b=3,ab=1
所以(a+b)2=9,2ab=2
所以a2+b2+2ab=9,2ab=2
得a2+b2=7
根據(jù)上面的解題思路與方法,解決下列問題:
(1)若(7﹣x)(x﹣4)=1,求(7﹣x)2+(x﹣4)2的值;
(2)如圖,點C是線段AB上的一點,以AC、BC為邊向兩邊作正方形,設(shè)AB=5,兩正方形的面積和S1+S2=17,求圖中陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是邊BC上的一點,DE⊥AB,DF⊥AC,垂足分別是E、F,EF∥BC.
(1)求證:△BDE≌△CDF;
(2)若BC=2AD,求證:四邊形AEDF是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD,P是對角線AC上任意一點,E為AD上的點,且∠EPB=90°,PM⊥AD,PN⊥AB.
(1)求證:四邊形PMAN是正方形;
(2)求證:EM=BN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“大美濕地,水韻鹽城”.某校數(shù)學(xué)興趣小組就“最想去的鹽城市旅游景點”隨機(jī)調(diào)查了本校部分學(xué)生,要求每位同學(xué)選擇且只能選擇一個最想去的景點,下面是根據(jù)調(diào)查結(jié)果進(jìn)行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計圖:
請根據(jù)圖中提供的信息,解答下列問題:
(1)求被調(diào)查的學(xué)生總?cè)藬?shù);
(2)補(bǔ)全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);
(3)若該校共有800名學(xué)生,請估計“最想去景點B“的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC中,點E在AB上,點D在CB延長線上,且ED=EC.
(1)當(dāng)點E為AB中點時,如圖①,AE DB(填“﹥”“﹤”或“=”),并說明理由;
(2)當(dāng)點E為AB上任意一點時,如圖②,AE DB(填“﹥”“﹤”或“=”),并說明理由;(提示:過點E作EF∥BC,交AC于點F)
(3)在等邊△ABC中,點E在直線AB上,點D在直線BC上,且ED=EC.若△ABC的邊長為1,AE=2,請你畫出圖形,并直接寫出相應(yīng)的CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,直線y=﹣x+b與坐標(biāo)軸交于C,D兩點,直線AB與坐標(biāo)軸交于A,B兩點,線段OA,OC的長是方程x2﹣3x+2=0的兩個根(OA>OC).
(1)求點A,C的坐標(biāo);
(2)直線AB與直線CD交于點E,若點E是線段AB的中點,反比例函數(shù)y=(k≠0)的圖象的一個分支經(jīng)過點E,求k的值;
(3)在(2)的條件下,點M在直線CD上,坐標(biāo)平面內(nèi)是否存在點N,使以點B,E,M,N為頂點的四邊形是菱形?若存在,請直接寫出滿足條件的點N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“五·一車展”期間,某汽車經(jīng)銷商推出四種型號的轎車共1000輛進(jìn)行展銷,型號轎車銷售的成交率(售出數(shù)量展銷數(shù)量)為50%,圖1是各型號參展轎車的百分比,圖2是已售出的各型號轎車的數(shù)量,(兩幅統(tǒng)計圖尚不完整)
(1)參加展銷的型號轎車有多少輛?
(2)請你將圖2的統(tǒng)計圖補(bǔ)充完整.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com