【題目】如圖,九(1)班課外活動小組利用標桿測量學校旗桿的高度,已知標桿高度CD=3m,標桿與旗桿的水平距離BD=15m,人的眼睛與地面的高度EF=1.6m,人與標桿CD的水平距離DF=2m,人的眼睛E、標桿頂點C和旗桿頂點A在同一直線,求旗桿AB的高度.

【答案】135米.

【解析】

試題利用三角形相似中的比例關系,首先由題目和圖形可看出,求AB的長度分成了2個部分,AHHB部分,其中HB=EF=16m,剩下的問題就是求AH的長度,利用△CGE∽△AHE,得出,把相關條件代入即可求得AH=119,所以AB=AH+HB=AH+EF=135m

試題解析:連接A、C、E,過點EEH∥FB,交DC于點G,交AB于點H,

∵CD⊥FB,AB⊥FB,

∴CD∥AB

∴△CGE∽△AHE

即:

∴AH=119

∴AB=AH+HB=AH+EF=119+16=135m).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yax2bxc(a≠0),該函數(shù)y與自變量x的部分對應值如下表:

x

1

2

3

y

0

1

0

(1)求該二次函數(shù)的表達式;

(2)不等式ax2bxc0的解集為

不等式ax2bxc3的解集為 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】Windows2000下有一個有趣的掃雷游戲.如圖是掃雷游戲的一部分,說明:圖中數(shù)字2表示在以該數(shù)字為中心的周邊8個方格中有2個地雷,小旗表示該方格已被探明有地雷.現(xiàn)在還剩下、三個方格未被探明,其他地方為安全區(qū)(包括有數(shù)字的方格),則、三個方格中有地雷概率最大的方格是( )

2

2

A. A B. B C. C D. 無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于、兩點,則下列一次函數(shù)中,能使線段最長的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)yk0)圖象交于A、B兩點,與y軸交于點C,與x軸交于點D,其中A點坐標為(﹣2,3).

1)求一次函數(shù)和反比例函數(shù)解析式.

2)若將點C沿y軸向下平移4個單位長度至點F,連接AFBF,求△ABF的面積.

3)根據(jù)圖象,直接寫出不等式﹣x+b的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,海上有一燈塔P,在它周圍3海里處有暗礁.一艘客輪以9海里/時的速度由西向東航行,行至A點處測得P在它的北偏東60度的方向,繼續(xù)行駛20分鐘后,到達B處又測得燈塔P在它的北偏東45度方向. 問客輪不改變方向繼續(xù)前進有無觸礁的危險?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,點D是半圓O上一點,點C 的中點,CEAB于點E,過點D的切線交EC的延長線于點G,連接AD,分別交CE、CB于點P、Q,連接AC

1)求證:GPGD

2)求證:P是線段AQ的中點;

3)連接CD,若CD2,BC4,求O的半徑和CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示,點C將線段AB分成兩部分,如果,那么點C為線段AB的黃金分割點.某研究小組在進行課題學習時,由黃金分割點聯(lián)想到黃金分割線,類似地給出黃金分割線的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果,那么稱直線l為該圖形的黃金分割線.

(1)研究小組猜想:在ABC中,若點DAB邊上的黃金分割點,如圖2所示,則直線CDABC的黃金分割線,你認為對嗎?說說你的理由;

(2)請你說明:三角形的中線是否是該三角形的黃金分割線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的頂點Ax軸的正半軸上,頂點Cy軸的正半軸上,點B在雙曲線x0)上,點D在雙曲線x0)上,點D的坐標是 33

1)求k的值;

2)求點A和點C的坐標.

查看答案和解析>>

同步練習冊答案