【題目】求知中學有一塊四邊形的空地ABCD,如下圖所示,學校計劃在空地上種植草皮,經測量∠A=90°,AB=3m,BC=12m,CD=13mDA=4m,若每平方米草皮需要250元,問學校需要投入多少資金買草皮?

【答案】學校需要投入9000元資金買草皮.

【解析】

仔細分析題目,需要求得四邊形的面積才能求得結果.連接BD,在直角三角形ABD中可求得BD的長,由BDCD、BC的長度關系可得三角形DBC為一直角三角形,DC為斜邊;由此看,四邊形ABCDRtABDRtDBC構成,則容易求解.

連接BD

RtABD中,BD2=AB2+AD2=32+42=52

CBD中,CD2=132,BC2=122,

122+52=132

BC2+BD2=CD2,

∴∠DBC=90°,

S四邊形ABCD=SBAD+SDBC=ADAB+DBBC,

=×4×3+×12×5=36

所以需費用36×250=9000(元),

答:學校需要投入9000元資金買草皮.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商場計劃用900元從生產廠家購進50臺計算器,已知該廠家生產三種不同型號的計算器,出廠價分別為A種每臺15元,B種每臺21元,C種毎臺25元.

1)商場同時購進兩種不同型號的計算器50臺,用去900元.

①若同時購進AB 兩種時,則購進AB 兩種計算器各多少臺?;

②若同時購進AC 兩種時,則購進A、C 兩種計算器各多少臺?;

2)若商場銷售一臺A種計算器可獲利5元,銷售一臺B種計算器可獲利8元,銷售一臺C種計算器可獲利12元,在同時購進兩種不同型號的計算器方案中,為了使銷售時獲利最多,你選擇哪種方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某興趣小組為了了解本校男生參加課外體育鍛煉情況,隨機抽取本校300名男生進行了問卷調查,統(tǒng)計整理并繪制了如下兩幅尚不完整的統(tǒng)計圖.

請根據以上信息解答下列問題:

課外體育鍛煉情況扇形統(tǒng)計圖中,經常參加所對應的圓心角的度數(shù)為______;

請補全條形統(tǒng)計圖;

該校共有1200名男生,請估計全校男生中經常參加課外體育鍛煉并且最喜歡的項目是籃球的人數(shù);

小明認為全校所有男生中,課外最喜歡參加的運動項目是乒乓球的人數(shù)約為,請你判斷這種說法是否正確,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P為邊長為6的正方形ABCD的邊BC上一動點(P與B、C不重合),Q在CD上,且CQ=BP,連接AP、BQ,將△BQC沿BQ所在的直線翻折得到△BQE,延長QE交BA的延長線于點F.

(1)試探究AP與BQ的數(shù)量與位置關系,并證明你的結論;

(2)當E是FQ的中點時,求BP的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC內接于⊙O,且AB為⊙O的直徑ODAB,與AC交于點E,與過點C的⊙O切線交于點D.

(1)若AC=6,BC=3,求OE的長.

(2)試判斷∠A與∠CDE的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖:在△ABC中,AC=3,BC=6,C=60;

(1)將△ABC繞著點C旋轉,使點A落在直線BC上的點A,B落在B′,在下圖中畫出旋轉后的△ABC.

(2)直接寫出AB的長,AB=___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形ABCD中,AB3,BC4,點EBC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點B′處,當△CEB′為直角三角形時,BE的長為( )

A. 3 B. C. 23 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】O為直線AB上一點,在直線AB同側任作射線OC、OD,使得∠COD=90°

1)如圖1,過點O作射線OE,當OE恰好為∠AOC的角平分線時,另作射線OF,使得OF平分∠BOD,則∠EOF的度數(shù)是__________度;

2)如圖2,過點O作射線OE,當OE恰好為∠AOD的角平分線時,求出∠BOD與∠COE的數(shù)量關系;

3)過點O作射線OE,當OC恰好為∠AOE的角平分線時,另作射線OF,使得OF平分∠COD,若∠EOC=3EOF,直接寫出∠AOE的度數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小王同學在學校組織的社會調查活動中負責了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機調查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖).

月均用水量(單位:t)

頻數(shù)

百分比

2≤x<3

2

4%

3≤x<4

12

24%

4≤x<5

   

   

5≤x<6

10

20%

6≤x<7

   

12%

7≤x<8

3

6%

8≤x<9

2

4%

(1)請根據題中已有的信息補全頻數(shù)分布表和頻數(shù)分布直方圖;

(2)如果家庭月均用水量大于或等于4t且小于7t”為中等用水量家庭,請你估計總體小王所居住的小區(qū)中等用水量家庭大約有多少戶?

(3)從月均用水量在2≤x<3,8≤x<9這兩個范圍內的樣本家庭中任意抽取2個,請用列舉法(畫樹狀圖或列表)求抽取出的2個家庭來自不同范圍的概率.

查看答案和解析>>

同步練習冊答案