【題目】菱形的周長為20cm,兩鄰角的比為1:3,則菱形的面積為( 。.
A.25cm2
B.16cm2       
C. cm2
D. cm2

【答案】C
【解析】由已知可得,菱形的邊長AB=5cm,∠A=45°,∠D=135°,作BE⊥AD于E ,
則△ABE是等腰直角三角形,根據(jù)勾股定理可得BE=AE= cm,則菱形的面積為 cm2 , 故選C.

【考點精析】根據(jù)題目的已知條件,利用勾股定理的概念和菱形的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個正n邊形的每個內(nèi)角為156°,則這個正n邊形的邊數(shù)是( )

A. 13 B. 14 C. 15 D. 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】多邊形的內(nèi)角和不可能為( )

A. 180° B. 680° C. 1 080° D. 1 980°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(21)所在的象限是( )

A.第一象限 B.第二象限 C.第三象限 D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用反證法證明“三角形的三個內(nèi)角中至少有一個角不小于60度”,第一步應(yīng)假設(shè)_____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填寫推理理由: 如圖,CD∥EF,∠1=∠2,求證:∠3=∠ACB.
證明:∵CD∥EF,
∴∠DCB=∠2
∵∠1=∠2,∴∠DCB=∠1.
∴GD∥CB
∴∠3=∠ACB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠ADC=72°,AD的垂直平分線交對角線BD于點P , 垂足為E , 連接CP , 求∠CPB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,AEBC , AFCD , 且EF分別為BC , CD的中點,求∠EAF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)九年級1班同學(xué)積極響應(yīng)“陽光體育工程”的號召,利用課外活動時間積極參加體育鍛煉,每位同學(xué)從長跑、籃球、鉛球、立定跳遠(yuǎn)中選一項進(jìn)行訓(xùn)練,訓(xùn)練前后都進(jìn)行了測試.現(xiàn)將項目選擇情況及訓(xùn)練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖表.

請你根據(jù)圖表中的信息回答下列問題:

(1)求選擇長跑訓(xùn)練的人數(shù)占全班人數(shù)的百分比及該班學(xué)生的總?cè)藬?shù);

(2)求訓(xùn)練后籃球定時定點投籃人均進(jìn)球數(shù)

(3)根據(jù)測試資料,訓(xùn)練后籃球定時定點投籃的人均進(jìn)球數(shù)比訓(xùn)練之前人均進(jìn)球數(shù)增加25%。請求出參加訓(xùn)練之前的人均進(jìn)球數(shù)。

查看答案和解析>>

同步練習(xí)冊答案