【題目】如圖,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)C、D是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象過(guò)點(diǎn)B、D

(1)D點(diǎn)的坐標(biāo);

(2)求一次函數(shù)及二次函數(shù)的解析式;

(3)求拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸;

(4)根據(jù)圖象寫(xiě)出使一次函數(shù)值大于二次函數(shù)的值的x的取值范圍.

【答案】(1) (﹣2,3);(2) y=x+1;y=x22x+3;(3)頂點(diǎn)坐標(biāo)(﹣1,4),對(duì)稱軸為直線x=1;(4)x<-2x>1

【解析】

(1)根據(jù)函數(shù)圖象求出對(duì)稱軸,再根據(jù)二次函數(shù)的對(duì)稱性寫(xiě)出點(diǎn)D的坐標(biāo)即可;

(2)分別利用待定系數(shù)法求函數(shù)解析式解答;

(3)把拋物線解析式整理成頂點(diǎn)式形式,然后寫(xiě)出即可;

(4)根據(jù)圖象寫(xiě)出一次函數(shù)圖象在二次函數(shù)圖象上方部分的x的取值范圍即可.

解:(1)由圖可知,二次函數(shù)圖象的對(duì)稱軸為直線x=1,

∵點(diǎn)CD是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),

∴點(diǎn)D的坐標(biāo)為(﹣2,3);

(2)設(shè)直線BD的解析式為y=kx+bk≠0),

,

解得,

所以,直線BD的解析式為y=x+1;

設(shè)二次函數(shù)的解析式為y=ax2+bx+c,

解得,

所以,二次函數(shù)的解析式為y=x22x+3;

(3)y=x22x+3=﹣(x+12+4,

∴拋物線的頂點(diǎn)坐標(biāo)為(﹣1,4),

對(duì)稱軸為直線x=1,

4)根據(jù)圖象寫(xiě)出一次函數(shù)圖象在二次函數(shù)圖象上方部分即可得x<-2x>1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是由8個(gè)大小相同的小正方體組合成的簡(jiǎn)單幾何體.

(1)該幾何體的主視圖如圖所示,請(qǐng)?jiān)谙旅娣礁窦堉蟹謩e畫(huà)出它的左視圖和俯視圖;(邊框線加粗畫(huà)出,并涂上陰影)

(2)如果在這個(gè)幾何體上再添加一些相同的小正方體,并保持這個(gè)幾何體的俯視圖和主視圖不變,那么請(qǐng)?jiān)谙铝芯W(wǎng)格圖中畫(huà)出添加小正方體后所得幾何體所有可能的左視圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在所給網(wǎng)格圖(每小格均為邊長(zhǎng)是1的正方形)中完成下列各題:

(1)圖形ABCD與圖形A1B1C1D1關(guān)于直線MN成軸對(duì)稱,請(qǐng)?jiān)趫D中畫(huà)出對(duì)稱軸并標(biāo)注上相應(yīng)字母M、N;

(2)以圖中O點(diǎn)為位似中心,將圖形ABCD放大,得到放大后的圖形A2B2C2D2,則圖形ABCD與圖形A2B2C2D2的對(duì)應(yīng)邊的比是多少(注:只要寫(xiě)出對(duì)應(yīng)邊的比即可);

(3)求圖形A2B2C2D2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,弦AB=CD,ABCD于點(diǎn)E,且AEEBCEED,連結(jié)AODO,BD

(1)求證:EB=ED

(2)若AO=6,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知下列函數(shù):(1)y=32x2;(2)y=;(3)y=3x2x1);(4)y=2x2(5)y=x2﹣(3+x2;(6)y=mx2+nx+p(其中m、n、p為常數(shù)).其中一定是二次函數(shù)的有(  )

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解某區(qū)2018年初中畢業(yè)生畢業(yè)后的去向,某區(qū)教育部門(mén)對(duì)部分初三學(xué)生進(jìn)行了抽樣調(diào)查,就初三學(xué)生的四種去向(A,讀普通高中;B,讀職業(yè)高中;C,直接進(jìn)入社會(huì)就業(yè);D,其它)進(jìn)行數(shù)據(jù)統(tǒng)計(jì),并繪制了兩幅不完整的統(tǒng)計(jì)圖(a)、(b).請(qǐng)問(wèn):

(1)此次共調(diào)查了多少名初中畢業(yè)生?

(2)將兩幅統(tǒng)計(jì)圖中不完整的部分補(bǔ)充完整;

(3)若某區(qū)2018年初三畢業(yè)生共有3500人,請(qǐng)估計(jì)2019年初三畢業(yè)生中讀普通高中的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2經(jīng)過(guò)平移得到拋物線y=ax2+bx,其對(duì)稱軸與兩段拋物線所圍成的陰影部分的面積為,則a、b的值分別為(  )

A. , B. ,﹣ C. ,﹣ D. ,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)重要的著作,奠定了中國(guó)傳統(tǒng)數(shù)學(xué)的基本框架《九章算術(shù)》中記

載:今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長(zhǎng)一尺,間徑幾何?如圖

閱讀完這段文字后,小智畫(huà)出了一個(gè)圓柱截面示意圖如圖,其中BOCD于點(diǎn)A,求間徑就是要求O的直徑再次閱讀后,發(fā)現(xiàn)AB=______寸,CD=____一尺等于十寸,通過(guò)運(yùn)用有關(guān)知識(shí)即可解決這個(gè)問(wèn)題請(qǐng)你補(bǔ)全題目條件,并幫助小求出O的直徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知:如圖,在正方形ABCD中,點(diǎn)E為邊AB的中點(diǎn),聯(lián)結(jié)DE,點(diǎn)F在DE上CF=CD,過(guò)點(diǎn)F作FG⊥FC交AD于點(diǎn)G.

(1)求證:GF=GD;

(2)聯(lián)結(jié)AF,求證:AF⊥DE.

查看答案和解析>>

同步練習(xí)冊(cè)答案