【題目】某商店購進(jìn)一批單價(jià)為8元的商品,如果按每件10元出售,那么每天可銷售100件.經(jīng)過調(diào)查發(fā)現(xiàn),這種商品的銷售單價(jià)每提高1元,其銷售量相應(yīng)減少20件.設(shè)這種商品的銷售單提高元.
(1)現(xiàn)每天的銷售量為 件,現(xiàn)每件的利潤為 元.
(2)求這種商品的銷售單價(jià)提高多少元時(shí),才能使每天所獲利潤最大?最大利潤是多少?
【答案】(1),;(2)單價(jià)提高1.5元時(shí),每天獲得的最大利潤為245元.
【解析】
(1)設(shè)這種商品的銷售單價(jià)提高元,則銷量為件,每件的利潤件;
(2)根據(jù)利潤數(shù)量每件的利潤建立與的關(guān)系式,由二次函數(shù)的性質(zhì)就可以求出結(jié)論.
解:(1)設(shè)這種商品的銷售單價(jià)提高元,則銷量為件,每件的利潤件,
故答案為:,;
(2)設(shè)商店每天獲得的利潤為元,則
,
當(dāng)時(shí),,
所以這種商品的銷售單價(jià)提高1.5元時(shí),每天獲得的最大利潤為245元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+2x+m﹣2=0有兩個(gè)實(shí)數(shù)根,m為正整數(shù),且該方程的根都是整數(shù),則符合條件的所有正整數(shù)m的和為( 。
A. 6 B. 5 C. 4 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AE與BF相交于點(diǎn)D,AB⊥AE,垂足為點(diǎn)A,EF⊥AE,垂足為點(diǎn)E,點(diǎn)C在AD上,連接BC,要計(jì)算A、B兩地的距離,甲、乙、丙、丁四組同學(xué)分別測量了部分線段的長度和角的度數(shù),各組分別得到以下數(shù)據(jù):
甲:AC、∠ACB;
乙:EF、DE、AD;
丙:AD、DE和∠DCB;
。CD、∠ABC、∠ADB.
其中能求得A、B兩地距離的數(shù)據(jù)有( 。
A.甲、乙兩組B.丙、丁兩組
C.甲、乙、丙三組D.甲、乙、丁三組
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對(duì)稱軸為直線x=的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).
(1)求拋物線解析式及頂點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)E(x,y)是拋物線上一動(dòng)點(diǎn),且位于第四象限,四邊形OEAF是以OA為對(duì)角線的平行四邊形,求四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)①當(dāng)四邊形OEAF的面積為24時(shí),請(qǐng)判斷OEAF是否為菱形?
②是否存在點(diǎn)E,使四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場第一次用元購進(jìn)某款智能清潔機(jī)器人進(jìn)行銷售,很快銷售一空,商家又用元第二次購進(jìn)同款智能清潔機(jī)器人,所購進(jìn)數(shù)量是第一次的倍,但單價(jià)貴了元.
(1)求該商家第一次購進(jìn)智能清潔機(jī)器人多少臺(tái)?
(2)若所有智能清潔機(jī)器人都按相同的標(biāo)價(jià)銷售,要求全部銷售完畢的利潤率不低于(不考慮其它因素),那么每臺(tái)智能清潔機(jī)器人的標(biāo)價(jià)至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,一元二次方程x2=﹣1沒有實(shí)數(shù)根,即不存在一個(gè)實(shí)數(shù)的平方等于﹣1.若我們規(guī)定一個(gè)新數(shù)“i”,使其滿足i2=﹣1(即方程x2=﹣1有一個(gè)根為i).并且進(jìn)一步規(guī)定:一切實(shí)數(shù)可以與新數(shù)進(jìn)行四則運(yùn)算,且原有運(yùn)算律和運(yùn)算法則仍然成立,于是有i1=i,i2=﹣1,i3=i2×i=(﹣1)×i=﹣i,i4=(i2)2=(﹣1)2=1,從而對(duì)任意正整數(shù)n,我們可以得到i4n+1=i4n×i=(i4)n×i=i,i4n+2=﹣1,i4n+3=﹣i,i4n=1.那么i+i2+i3+i4+…+i2012+i2013+…+i2019的值為( 。
A.0B.1C.﹣1D.i
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與軸、軸分別交于點(diǎn),,拋物線經(jīng)過點(diǎn),將點(diǎn)向右平移5個(gè)單位長度,得到點(diǎn).
(1)求點(diǎn)的坐標(biāo);
(2)求拋物線的對(duì)稱軸;
(3)若拋物線與線段恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,BE=FC,CF=2FD,AE、BF交于點(diǎn)G,連接AF,給出下列結(jié)論:①AE⊥BF; ②AE=BF; ③BG=GE; ④S四邊形CEGF=S△ABG,其中正確的個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 ,是一元二次方程的兩個(gè)實(shí)數(shù)根,且,拋物線的圖象經(jīng)過.
(1)求拋物線的解析式;
(2)設(shè)拋物線與軸的另一個(gè)交的為,拋物線的頂點(diǎn)為,求的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com