【題目】如圖 ,是一元二次方程的兩個實數(shù)根,且,拋物線的圖象經過

1)求拋物線的解析式;

2)設拋物線與軸的另一個交的為,拋物線的頂點為,求的面積.

【答案】(1) (2)3

【解析】

1)求出方程的兩個實數(shù)根,即可得出點A,B的坐標,代入拋物線解析式得出b,c的值即可;

2)根據(jù)拋物線解析式可求出點C、D的坐標,設拋物線的對稱軸l與直線BC相交于點M,求出直線BC的解析式,進而得出M的坐標,從而得出三角形的面積.

解:(1)由解得,

,,

,解之得

因此該拋物線的解析式為

2)拋物線的與x軸交點C的坐標為

(3,0),頂點D的坐標為(1,-4),拋物線的對稱軸l與直線BC相交于點M,

設直線BC的解析式為,則,解得

∴直線BC的解析式為,

∴直線BC與對稱軸l的交點M的坐標為(1,-2),∴ MD=2,

∴△BCD的面積為3

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商店購進一批單價為8元的商品,如果按每件10元出售,那么每天可銷售100件.經過調查發(fā)現(xiàn),這種商品的銷售單價每提高1元,其銷售量相應減少20件.設這種商品的銷售單提高元.

1)現(xiàn)每天的銷售量為 件,現(xiàn)每件的利潤為 元.

2)求這種商品的銷售單價提高多少元時,才能使每天所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB5,AC8,BC7,點DBC上一動點,DEABE,DFACF,線段EF的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,tanACB=2,D在△ABC內部,且AD=CD,ADC=90°,連接BD,若△BCD的面積為10,則AD的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】祥云橋位于省城太原南部,該橋塔主體由三根曲線塔柱組合而成,全橋共設13對直線型斜拉索,造型新穎,是三晉大地的一種象征.某數(shù)學綜合與實踐小組的同學把測量斜拉索頂端到橋面的距離作為一項課題活動,他們制訂了測量方案,并利用課余時間借助該橋斜拉索完成了實地測量.測量結果如下表.

項目

內容

課題

測量斜拉索頂端到橋面的距離

測量示意圖

說明:兩側最長斜拉索AC,BC相交于點C,分別與橋面交于A,B兩點,且點A,B,C在同一豎直平面內.

測量數(shù)據(jù)

∠A的度數(shù)

∠B的度數(shù)

AB的長度

38°

28°

234

(1)請幫助該小組根據(jù)上表中的測量數(shù)據(jù),求斜拉索頂端點CAB的距離(參考數(shù)據(jù):sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)

(2)該小組要寫出一份完整的課題活動報告,除上表的項目外,你認為還需要補充哪些項目(寫出一個即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校舉辦園博會知識競賽,打算購買A、B兩種獎品.如果購買A獎品10件、B獎品5件,共需120元;如果購買A獎品5件、B獎品10件,共需90元.

1AB兩種獎品每件各多少元?

2)若購買A、B獎品共100件,總費用不超過600元,則A獎品最多購買多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸正半軸交于點A3,0).以OA為邊在x軸上方作正方形OABC,延長CB交拋物線于點D,再以BD為邊向上作正方形BDEF.則E的坐標是____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】荊車中學決定在本校學生中,開展足球、籃球、羽毛球、乒乓球四種活動.為了了解學生對這四種活動的喜愛情況,學校隨機調查了該校名學生,看他們喜愛哪一種活動(每名學生必選一種且只能從這四種活動中選擇一種),現(xiàn)將調查的結果繪制成如下不完整的統(tǒng)計圖.

(1)_____________,_______________;

(2)請補全上圖中的條形圖;

(3)根據(jù)抽樣調查的結果,請估算全校1800名學生中,大約有多少人喜愛足球;

(4)在抽查的名學生中,喜愛打乒乓球的有10名同學(其中有4名女生,包括小紅、小梅).現(xiàn)將喜愛打乒乓球的同學平均分成兩組進行訓練,只女生每組分兩人.求小紅、小梅能分在同一組的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 如圖,一次函數(shù)y=0.5x+3的圖象與反比例函數(shù)y=k≠0)的圖象交于A-5,a),B兩點,與x軸交于點D,與y軸交于點C,且AD=BC

1)求此反比例函數(shù)的表達式和B點坐標;

2)連接AOBO,若點Px軸上,且SBDP=SBOA,求點P的坐標;

3)如圖2,作ABFE,點F和點E分別在y軸和x軸上,求證:∠AED=FEO

查看答案和解析>>

同步練習冊答案