【題目】已知關(guān)于x的一元二次方程有實(shí)數(shù)根.

1)求k的取值范圍;

2)若k為正整數(shù),且方程有兩個(gè)非零的整數(shù)根,求k的取值.

【答案】1;(2k3

【解析】

1)根據(jù)一元二次方程2x2+4x+k1=0有實(shí)數(shù)根,可得出≥0,解不等式即可得出結(jié)論;

2)分別把k的正整數(shù)值代入方程2x2+4x+k1=0,根據(jù)解方程的結(jié)果進(jìn)行分析解答.

1)由題意得:=168k1≥0,∴k≤3

2)∵k為正整數(shù),∴k=1,2,3

當(dāng)k=1時(shí),方程2x2+4x+k1=0變?yōu)椋?/span>2x2+4x =0,解得:x=0x=2,有一個(gè)根為零;

當(dāng)k=2時(shí),方程2x2+4x+k1=0變?yōu)椋?/span>2x2+4x +1=0,解得:x=,無(wú)整數(shù)根;

當(dāng)k=3時(shí),方程2x2+4x+k1=0變?yōu)椋?/span>2x2+4x +2=0,解得:x1=x2=1,有兩個(gè)非零的整數(shù)根.

綜上所述:k=3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)EF分別在邊AB,BC上,且AE=AB,將矩形沿直線EF折疊,點(diǎn)B恰好落在AD邊上的點(diǎn)P處,連接BPEF于點(diǎn)Q,對(duì)于下列結(jié)論:①EF=2BE;②PF=2PE③FQ=4EQ;④△PBF是等邊三角形.其中正確的是( )

A. ①② B. ②③ C. ①③ D. ①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有四張正面分別標(biāo)有數(shù)字﹣1,2,﹣3,4的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上洗均勻.

(1)隨機(jī)抽取一張卡片,求抽到標(biāo)有負(fù)數(shù)的卡片的概率;

(2)設(shè)平面直角坐標(biāo)系內(nèi)點(diǎn)A(x,y),現(xiàn)隨機(jī)抽取一張卡片,將卡片上的數(shù)字記作x,然后不放回,再隨機(jī)抽取一張卡片,將卡片上的數(shù)字記作y.請(qǐng)求出點(diǎn)A在第二象限的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明家所在居民樓的對(duì)面有一座大廈AB74米,為測(cè)量這座居民樓與大廈之間的水平距離CD的長(zhǎng)度,小明從自己家的窗戶C處測(cè)得∠DCA37°,∠DCB48°(DC平行于地面).求小明家所在居民樓與大廈的距離CD的長(zhǎng)度.

(參考數(shù)據(jù):sin37°,tan37°,sin48°tan48°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形,點(diǎn)是線段上一動(dòng)點(diǎn), 的中點(diǎn), 的延長(zhǎng)線交BC于.

(1)求證: ;

(2),,從點(diǎn)出發(fā),l的速度向運(yùn)動(dòng)(不與重合).設(shè)點(diǎn)運(yùn)動(dòng)時(shí)間為,請(qǐng)用表示的長(zhǎng);并求為何值時(shí),四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD的邊長(zhǎng)為2,將射線AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α,所得射線與線段BD交于點(diǎn)M,作CEAM于點(diǎn)E,點(diǎn)N與點(diǎn)M關(guān)于直線CE對(duì)稱,連接CN

(1)如圖,當(dāng)0°<α<45°時(shí):

①依題意補(bǔ)全圖;

②用等式表示∠NCE與∠BAM之間的數(shù)量關(guān)系:___________;

(2)當(dāng)45°<α<90°時(shí),探究∠NCE與∠BAM之間的數(shù)量關(guān)系并加以證明;

(3)當(dāng)0°<α<90°時(shí),若邊AD的中點(diǎn)為F,直接寫出線段EF長(zhǎng)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一名在校大學(xué)生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品的成本價(jià)10元/件,已知銷售價(jià)不低于成本價(jià),且物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于16元/件,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量(件與銷售價(jià)(元/件)之間的函數(shù)關(guān)系如圖所示.

(1)求之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(2)求每天的銷售利潤(rùn)W(元與銷售價(jià)(元/件)之間的函數(shù)關(guān)系式,并求出每件銷售價(jià)為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為1,點(diǎn)E為邊AB上一動(dòng)點(diǎn),連結(jié)CE并將其繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到CF,連結(jié)DF,以CE、CF為鄰邊作矩形CFGE,GEAD、AC分別交于點(diǎn)HM,GFCD延長(zhǎng)線于點(diǎn)N

1)證明:點(diǎn)AD、F在同一條直線上;

2)隨著點(diǎn)E的移動(dòng),線段DH是否有最小值?若有,求出最小值;若沒(méi)有,請(qǐng)說(shuō)明理由;

3)連結(jié)EF、MN,當(dāng)MNEF時(shí),求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F分別是AD、BC的中點(diǎn),連接AFBE交于點(diǎn)G,連接CEDF交于點(diǎn)H

1)求證:四邊形EGFH為平行四邊形;

2)當(dāng)ABBC滿足什么條件時(shí),四邊形EGFH為矩形?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案