【題目】如圖,在矩形ABCD中,點(diǎn)E,F分別在邊AB,BC上,且AE=AB,將矩形沿直線EF折疊,點(diǎn)B恰好落在AD邊上的點(diǎn)P處,連接BPEF于點(diǎn)Q,對(duì)于下列結(jié)論:①EF=2BE②PF=2PE;③FQ=4EQ④△PBF是等邊三角形.其中正確的是( )

A. ①② B. ②③ C. ①③ D. ①④

【答案】D

【解析】

試題解析:∵AE=AB,

∴BE=2AE,

由翻折的性質(zhì)得,PE=BE,

∴∠APE=30°,

∴∠AEP=90°﹣30°=60°,

∴∠BEF=180°﹣∠AEP=180°﹣60°=60°

∴∠EFB=90°﹣60°=30°,

∴EF=2BE,故正確;

∵BE=PE,

∴EF=2PE

∵EFPF,

∴PF2PE,故錯(cuò)誤;

由翻折可知EF⊥PB,

∴∠EBQ=∠EFB=30°,

∴BE=2EQ,EF=2BE,

∴FQ=3EQ,故錯(cuò)誤;

由翻折的性質(zhì),∠EFB=∠EFP=30°,

∴∠BFP=30°+30°=60°

∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,

∴∠PBF=∠PFB=60°

∴△PBF是等邊三角形,故正確;

綜上所述,結(jié)論正確的是①④

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC的三邊為a、b、c,由下列條件不能判斷它是直角三角形的是( 。

A. A: B: C =345 B. A=B+C

C. a2=(b+c)(b-c) D. a:b:c =12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OP平分∠BOA,PC⊥OA,PD⊥OB,垂足分別是C、D,則下列結(jié)論中錯(cuò)誤的是(  )

A. PC=PD B. OC=OD C. OC=OP D. ∠CPO=∠DPO

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀并理解下面的證明過(guò)程,并在每步后的括號(hào)內(nèi)填寫該步推理的依據(jù).

已知:如圖,AM,BN,CP△ABC的三條角平分線.

求證:AM、BN、CP交于一點(diǎn).

證明:如圖,設(shè)AM,BN交于點(diǎn)O,過(guò)點(diǎn)O分別作OD⊥BC,OF⊥AB,垂足分別為點(diǎn)D,E,F(xiàn).

∵O∠BAC角平分線AM上的一點(diǎn)( ),

∴OE=OF( )

同理,OD=OF.

∴OD=OE( )

∵CP∠ACB的平分線( ),

∴OCP( )

因此,AM,BN,CP交于一點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班將舉行“數(shù)學(xué)知識(shí)競(jìng)賽”活動(dòng),班長(zhǎng)安排小明購(gòu)買獎(jiǎng)品,下面兩圖是小明買回獎(jiǎng)品時(shí)與班長(zhǎng)的對(duì)話情境:

請(qǐng)根據(jù)上面的信息,解決問(wèn)題:

(1)試計(jì)算兩種筆記本各買了多少本?

(2)請(qǐng)你解釋:小明為什么不可能找回68元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為改善生態(tài)環(huán)境,防止水土流失,某村計(jì)劃在江漢堤坡種植白楊樹,現(xiàn)甲、乙兩家林場(chǎng)有相同的白楊樹苗可供選擇,其具體銷售方案如下:

甲林場(chǎng)

乙林場(chǎng)

購(gòu)樹苗數(shù)量

銷售單價(jià)

購(gòu)樹苗數(shù)量

銷售單價(jià)

不超過(guò)1000棵時(shí)

4元/棵

不超過(guò)2000棵時(shí)

4元/棵

超過(guò)1000棵的部分

3.8元/棵

超過(guò)2000棵的部分

3.6元/棵

設(shè)購(gòu)買白楊樹苗x棵,到兩家林場(chǎng)購(gòu)買所需費(fèi)用分別為y(元)、y(元).
(1)該村需要購(gòu)買1500棵白楊樹苗,若都在甲林場(chǎng)購(gòu)買所需費(fèi)用為元,若都在乙林場(chǎng)購(gòu)買所需費(fèi)用為元;
(2)分別求出y、y與x之間的函數(shù)關(guān)系式;
(3)如果你是該村的負(fù)責(zé)人,應(yīng)該選擇到哪家林場(chǎng)購(gòu)買樹苗合算,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過(guò)A(﹣1,0),B(3,0)兩點(diǎn),且與y軸交于點(diǎn)C,點(diǎn)D是拋物線的頂點(diǎn),拋物線的對(duì)稱軸DE交x軸于點(diǎn)E,連接BD.

(1)求經(jīng)過(guò)A,B,C三點(diǎn)的拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)P是線段BD上一點(diǎn),當(dāng)PE=PC時(shí),求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,過(guò)點(diǎn)P作PF⊥x軸于點(diǎn)F,G為拋物線上一動(dòng)點(diǎn),M為x軸上一動(dòng)點(diǎn),N為直線PF上一動(dòng)點(diǎn),當(dāng)以F、M、N、G為頂點(diǎn)的四邊形是正方形時(shí),請(qǐng)求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y=kx+b與y=kbx,它們?cè)谕蛔鴺?biāo)系內(nèi)的圖象可能為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,菱形ABCD的頂點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(0,1),點(diǎn)C在第一象限,對(duì)角線BDx軸平行.直線y=x+3x軸、y軸分別交于點(diǎn)E、F.將菱形ABCD沿x軸向左平移m個(gè)單位,當(dāng)點(diǎn)D落在EOF的內(nèi)部時(shí)(不包括三角形的邊),m的取值范圍是( 。

A. 4<m<6 B. 4≤m≤6 C. 4<m<5 D. 4≤m<5

查看答案和解析>>

同步練習(xí)冊(cè)答案