【題目】在平面直角坐標(biāo)系中,點A(t+1,t+2),B(t+3,t+1),將點A向右平移3個長度單位,再向下平移4個長度單位得到點C.

(1)用t表示點C的坐標(biāo)為_______;t表示點By軸的距離為___________;

(2)若t=1時,平移線段AB使點A、B到坐標(biāo)軸上的點處,指出平移的方向和距離,并求出點、的坐標(biāo);

(3)若t=0時,平移線段ABMNA與點M對應(yīng)),使點落在軸的負(fù)半軸上,三角形MNB的面積為4,試求點M、N的坐標(biāo).

【答案】 Ct+4,t-2)

【解析】分析:(1)根據(jù)平移規(guī)律即可得到結(jié)論;

(2)把線段AB分別向左平移2個單位,向下平移2個單位即可得到結(jié)論;

3)當(dāng)t=0得到 A1,2),B3,1,設(shè)A下平移2個單位,再左平移a個單位到達(dá)x軸負(fù)半軸,得到M1a,0),N3a,1),用割補法表示出MNB的面積,解方程即可.

詳解1Ct+4t2);

2)當(dāng)t=1時,A2,3),B4,2)將AB左平移2個單位得0,3);2,2);

AB下平移2個單位得2,1);4,0

3)若t=0,則A1,2),B3,1)設(shè)A下平移2個單位,再左平移a個單位到達(dá)x軸負(fù)半軸,∴M1a,0),N3a, 1),

∴(31+a2(31+a)1(3a1+a)1(33+a)2=4,

a=4,∴M(3,0),N(-1,-1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為倡導(dǎo)“低碳生活”,常選擇以自行車作為代步工具.如圖1所示是一輛自行車的實物圖,車架檔AC與CD的長分別為45cm,60cm,且它們互相垂直,座桿CE的長為20cm,車輪半徑28cm,點A,C,E在同一條直線上,且∠CAB=75°,如圖2

(1)求車座點E到地面的距離;(結(jié)果精確到1cm)
(2)求車把點D到車架檔直線AB的距離.(結(jié)果精確到1cm).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,D是AB邊上一點,圓O過D、B、C三點,∠DOC=2∠ACD=90°.

(1)求證:直線AC是圓O的切線;
(2)如果∠ACB=75°,圓O的半徑為2,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明的媽媽在菜市場買回3斤蘿卜、2斤排骨,準(zhǔn)備做蘿卜排骨湯.

媽媽:今天買這兩樣菜共花了45元,上月買同重量的這兩樣菜只要36;

爸爸:報紙上說了蘿卜的單價上漲50%,排骨單價上漲20%”;

小明:爸爸、媽媽,我想知道今天買的蘿卜和排骨的單價分別是多少?

請你通過列方程(組)求解這天蘿卜、排骨的單價(單位:元/斤).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC的平分線交BC于點DEAB上一點,且AEAC,EFBCAD于點F.

求證:四邊形CDEF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x,y,z是三個非負(fù)數(shù),并且滿足x+2y-5z=62x+y+5z=9.設(shè)k=3x+y+5z,記ak的最大值,bk的最小值,試求ab的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】[閱讀]

在平面直角坐標(biāo)系中,以任意兩點Px1,y1)、Qx2,y2)為端點的線段中點坐標(biāo)為,).

[運用]

(1)如圖,矩形ONEF的對角線相交于點M,ONOF分別在x軸和y軸上,O為坐標(biāo)原點E的坐標(biāo)為(4,3),則點M的坐標(biāo)為

(2)在直角坐標(biāo)系中A(﹣1,2),B(3,1),C(1,4)三點另有一點D與點A、BC構(gòu)成平行四邊形的頂點,求點D的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】重慶市居民用水的水價實行階梯收費,標(biāo)準(zhǔn)如下表:

每戶居民每月用水量(噸)

水費單價(元)

4.5

1)已知張三家5月份用水13噸,繳費47元,6月份用水15噸,繳費55元.請根據(jù)上述信息,求的值.

2)在(1)的條件下,由于天氣變熱,7月份是用水高峰期,張三家計劃7月份水費支出不超過100元,那么張三家7月份最多可用多少噸水?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD頂點A,D在⊙O上,邊BC經(jīng)過⊙O上一定P,且PF平分∠AFC,邊 AB,CD分別與⊙O相交于點E,F(xiàn),連接EF.

(1)求證:BC是⊙O的切線;
(2)若FC=2,求PC的長.

查看答案和解析>>

同步練習(xí)冊答案