【題目】如圖,四邊形OABC是平行四邊形,邊OC在x軸的負半軸上,反比例y= (k<0)的圖象經(jīng)過點A與BC的中點F,連接AF、OF,若△AOF的面積為9,則k的值為 .
【答案】-9
【解析】解:∵△AOF的面積為9,四邊形OABC是平行四邊形, ∴△BOC的面積是9,
∵反比例y= (k<0)的圖象經(jīng)過點A與BC的中點F,
∴△OCF的面積是4.5,
∵點F在反比例函數(shù)y= (k<0)的圖象上,
∴k=﹣(4.5×2)=﹣9,
所以答案是:﹣9.
【考點精析】利用比例系數(shù)k的幾何意義和平行四邊形的性質(zhì)對題目進行判斷即可得到答案,需要熟知幾何意義:表示反比例函數(shù)圖像上的點向兩坐標軸所作的垂線段與兩坐標軸圍成的矩形的面積;平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分.
科目:初中數(shù)學 來源: 題型:
【題目】某校初三(1)班的同學踴躍為“希望工程”捐款,根據(jù)捐款情況(捐款數(shù)為正數(shù))制作以下統(tǒng)計圖表,但班長不小心把墨水滴在統(tǒng)計表上,部分數(shù)據(jù)看不清楚.根據(jù)圖表中現(xiàn)有信息解決下列問題:
捐款 | 人數(shù) |
0~20元 | |
21~40元 | |
41~60元 | |
61~80元 | 6 |
81元以上 | 4 |
(1)全班有多少人捐款?
(2)如果捐款0~20元的人數(shù)在扇形統(tǒng)計圖中所占的圓心角為72°,那么捐款21~40元的有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)當一次性購物標價總額是300元時,甲、乙超市實付款分別是多少?
(2)當標價總額是多少時,甲、乙超市實付款一樣?
(3)小王兩次到乙超市分別購物付款198元和466元,若他只去一次該超市購買同樣多的商品,可以節(jié)省多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰直角三角形ABC中,∠ACB=90,AC=BC=4,D為AB的中點,E,F分別是AC, BC上的點(點E不與端點A,C重合),且AE=CF,連接EF并取EF的中點O,連接DO并延長至點G,使GO=OD.連接DE, GE, GF.
(1)求證:四邊形EDFG是正方形;
(2)直接寫出四邊形EDFG面積的最小值和E點所在的位置.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠AOB=90°,射線OA繞點O逆時針方向以每秒6°的速度旋轉(zhuǎn)(當旋轉(zhuǎn)角度等于360°時,OA停止旋轉(zhuǎn)),同時OB繞點O以每秒2°的速度旋轉(zhuǎn)(當OA停止旋轉(zhuǎn)時,OB同樣停止旋轉(zhuǎn)).求當OA旋轉(zhuǎn)多少秒,旋轉(zhuǎn)后的OA與OB形成的角度為50°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解本校九年級男生“引體向上”項目的訓練情況,隨機抽取該年級部分男生進行了一次測試(滿分15分,成績均記為整數(shù)分),并按測試成績(單位:分)分成四類:A類(12≤m≤15),B類(9≤m≤11),C類(6≤m≤8),D類(m≤5)繪制出以下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:
(1)本次抽取樣本容量為 , 扇形統(tǒng)計圖中A類所對的圓心角是度;
(2)請補全條形統(tǒng)計圖;
(3)若該校九年級男生有600名,請估計該校九年級男生“引體向上”項目成績?yōu)镃類的有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y= x﹣2與x軸交于點A,與y軸交于點C,經(jīng)過A、C兩點的拋物線與軸交于另一點B(1,0).
(1)求該拋物線的解析式.
(2)在直線y= x﹣2上方的拋物線上存在一動點D,連接AD、CD,設(shè)點D的橫坐標為m,△DCA的面積為S,求S與m的函數(shù)關(guān)系式,并求出S的最大值.
(3)在拋物線上是否存在一點M,使得以M為圓心,以 為半徑的圓與直線AC相切?若存在,請求出點M的坐標;若不存在,請說明理由.
(4)在y軸的正半軸上存在一點P,使∠APB的值最大,請直接寫出當∠APB最大時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了豐富少年兒童的業(yè)余生活,某社區(qū)要在如圖中的AB所在的直線上建一圖書室,本社區(qū)有兩所學校所在的位置在點C和點D處,CA⊥AB于A,DB⊥AB于B.已知AB=2.5km,CA=1.5km,DB=1.Okm,試問:圖書室E應該建在距點A多少km處,才能使它到兩所學校的距離相等?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一副三角板按如圖放置,則下列結(jié)論:
①如果∠2=30°,則有AC∥DE;
②∠BAE+∠CAD =180°;
③如果BC∥AD,則有∠2=45°;
④如果∠CAD=150°,必有∠4=∠C;
正確的有( )
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com