【題目】如圖,在下列(邊長(zhǎng)為1)的網(wǎng)格中,已知的三個(gè)頂點(diǎn),,在格點(diǎn)上,請(qǐng)分別按不同要求在網(wǎng)格中描出一個(gè)點(diǎn),并寫(xiě)出點(diǎn)的坐標(biāo).
(1)經(jīng)過(guò),,三點(diǎn)有一條拋物線,請(qǐng)?jiān)趫D1中描出點(diǎn),使點(diǎn)落在格點(diǎn)上,同時(shí)也落在這條拋物線上;則點(diǎn)的坐標(biāo)為______;
(2)經(jīng)過(guò),,三點(diǎn)有一個(gè)圓,請(qǐng)用無(wú)刻度的直尺在圖2中畫(huà)出圓心;則點(diǎn)的坐標(biāo)為______.
【答案】(1) ;(2)答案見(jiàn)解析,.
【解析】
(1) 拋物線的對(duì)稱(chēng)軸在BC的中垂線上,則點(diǎn)D、A關(guān)于函數(shù)對(duì)稱(chēng)軸對(duì)稱(chēng),即可求解;
(2)AC中垂線的表達(dá)式為:y=x,BC的中垂線為:x=,則圓心E為:( , ).
解:(1)拋物線的對(duì)稱(chēng)軸在BC的中垂線上,則點(diǎn)D、A關(guān)于函數(shù)對(duì)稱(chēng)軸對(duì)稱(chēng),
故點(diǎn)D(3,2),
故答案為:(3,2);
(2)AB中垂線的表達(dá)式為:y=x,BC的中垂線為:x=,則圓心E為:( , ).作圖如下:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0)、B兩點(diǎn),與y軸交于點(diǎn)C (0,3),點(diǎn)P在該拋物線的對(duì)稱(chēng)軸上,且縱坐標(biāo)為2.
(1)求拋物線的表達(dá)式以及點(diǎn)P的坐標(biāo);
(2)當(dāng)三角形中一個(gè)內(nèi)角α是另一個(gè)內(nèi)角β的兩倍時(shí),我們稱(chēng)α為此三角形的“特征角”.
①當(dāng)D在射線AP上,如果∠DAB為△ABD的特征角,求點(diǎn)D的坐標(biāo);
②點(diǎn)E為第一象限內(nèi)拋物線上一點(diǎn),點(diǎn)F在x軸上,CE⊥EF,如果∠CEF為△ECF的特征角,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與實(shí)踐
背景閱讀:旋轉(zhuǎn)就是將圖形上的每一點(diǎn)在平面內(nèi)繞著旋轉(zhuǎn)中心旋轉(zhuǎn)固定角度的位置移動(dòng),其中“旋”是過(guò)程,“轉(zhuǎn)”是結(jié)果.旋轉(zhuǎn)作為圖形變換的一種,具備圖形旋轉(zhuǎn)前后對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等:對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角:旋轉(zhuǎn)前、后的圖形是全等圖形等性質(zhì).所以充分運(yùn)用這些性質(zhì)是在解決有關(guān)旋轉(zhuǎn)問(wèn)題的關(guān)。
實(shí)踐操作:如圖1,在Rt△ABC中,∠B=90°,BC=2AB=12,點(diǎn)D,E分別是邊BC,AC的中點(diǎn),連接DE,將△EDC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角為α.
問(wèn)題解決:(1)①當(dāng)α=0°時(shí),= ;②當(dāng)α=180°時(shí),= .
(2)試判斷:當(dāng)0°≤a<360°時(shí),的大小有無(wú)變化?請(qǐng)僅就圖2的情形給出證明.
問(wèn)題再探:(3)當(dāng)△EDC旋轉(zhuǎn)至A,D,E三點(diǎn)共線時(shí),求得線段BD的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)在第一象限,且過(guò)點(diǎn)(0,1)和(﹣1,0).下列結(jié)論:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤當(dāng)x>﹣1時(shí),y>0,其中正確結(jié)論的個(gè)數(shù)是
A.5個(gè) B.4個(gè) C.3個(gè) D.2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為線段上一動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)、重合),在線段的同側(cè)分別作等邊和等邊,連結(jié)、,交點(diǎn)為.若,求動(dòng)點(diǎn)運(yùn)動(dòng)路徑的長(zhǎng)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如果三角形的兩個(gè)內(nèi)角與滿足,那么稱(chēng)這樣的三角形為“類(lèi)直角三角形”.
嘗試運(yùn)用
(1)如圖1,在中,,,,是的平分線.
①證明是“類(lèi)直角三角形”;
②試問(wèn)在邊上是否存在點(diǎn)(異于點(diǎn)),使得也是“類(lèi)直角三角形”?若存在,請(qǐng)求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
類(lèi)比拓展
(2)如圖2,內(nèi)接于,直徑,弦,點(diǎn)是弧上一動(dòng)點(diǎn)(包括端點(diǎn),),延長(zhǎng)至點(diǎn),連結(jié),且,當(dāng)是“類(lèi)直角三角形”時(shí),求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,□ABCD的對(duì)角線AC,BD相交于點(diǎn)O,E、F、G、H分別是OA、OB、OC、OD的中點(diǎn),那么□ABCD與四邊形EFGH是否是位似圖形?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,AB是直徑,點(diǎn)D是⊙O上一點(diǎn),點(diǎn)C是的中點(diǎn),CE⊥AB于點(diǎn)E,過(guò)點(diǎn)D的切線交EC的延長(zhǎng)線于點(diǎn)G,連接AD,分別交CE,CB于點(diǎn)P,Q,連接AC,關(guān)于下列結(jié)論:①∠BAD=∠ABC;②GP=GD;③點(diǎn)P是△ACQ的外心,其中結(jié)論正確的是________(只需填寫(xiě)序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=kx,y=,y=的圖象如圖所示,下列判斷正確的有_____.(填序號(hào))①k,a,b都是正數(shù);②函數(shù)y=與y=的圖象會(huì)出現(xiàn)四個(gè)交點(diǎn);③A,D兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng);④若B是OA的中點(diǎn),則a=4b.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com