【題目】如圖,EFAD,∠1=∠2,∠BAC=70°。將求∠AGD的過程填寫完整,并將依據(jù)填到相應的括號內(nèi).

解:∵EFAD( )

∴∠2= 。( )

又∵∠1=∠2,( )

∴∠1=∠3。( )

AB 。( )

∴∠BAC+ =180。( )

又∵∠BAC=70°,

∴∠AGD= 。

【答案】已知;∠3,兩直線平行,同位角相等;已知;等量代換;DG,內(nèi)錯角相等,兩直線平行;∠DGA;兩直線平行,同旁內(nèi)角互補;已知;110°.

【解析】

根據(jù)平行線的性質(zhì)先證明ABDG,然后由兩直線平行,同旁內(nèi)角互補可得∠BAC+DGA =180°,問題得解.

解:∵EFAD(已知)

∴∠2=3(兩直線平行,同位角相等)

又∵∠1=2,(已知)

∴∠1=3(等量代換)

ABDG(內(nèi)錯角相等,兩直線平行)

∴∠BAC+DGA =180°(兩直線平行,同旁內(nèi)角互補)

又∵∠BAC=70°,

∴∠AGD=110°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】矩形的兩條對角線的夾角為60度,對角線長為15,則矩形的較短邊長為(

A. 12B. 10C. 7.5D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學新建了一棟7層的教學大樓,每層樓有8間教室,進出這棟大樓共有八道門,其中四道正門大小相同,四道側(cè)門大小也相同.安全檢查中,對八道門進行了測試:當同時開啟一道正門和兩道側(cè)門時,2分內(nèi)可以通過560名學生;當同時開啟一道正門和一道側(cè)門時,4分內(nèi)可以通過800名學生.

1)平均每分內(nèi)一道正門和一道側(cè)門分別可以通過多少名學生?

2)檢查中發(fā)現(xiàn),緊急情況時因?qū)W生擁擠,出門的效率將降低30%.安全檢查規(guī)定:在緊急情況下全大樓的學生應在5分內(nèi)通過這八道門安全撤離,假設這棟教學大樓每間教室最多有45名學生,問建造的這八道門是否符合安全規(guī)定?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面的統(tǒng)計圖表示某體校射擊隊甲、乙兩名隊員射擊比賽的成績,根據(jù)統(tǒng)計圖中的信息,下列結(jié)論正確的是( 。

A. 甲隊員成績的平均數(shù)比乙隊員的大

B. 乙隊員成績的平均數(shù)比甲隊員的大

C. 甲隊員成績的中位數(shù)比乙隊員的大

D. 甲隊員成績的方差比乙隊員的大

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B,C在⊙O上,∠ABC=29°,過點C作⊙O的切線交OA的延長線于點D,則∠D的大小為( )

A.29°
B.32°
C.42°
D.58°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AB=10,BC=5,BN平分∠ABCCD于點N,交AD的延長線于點M,則下列結(jié)論:①DM=5;②線段BM、CD互相平分;③BDAM;④△BCN是等邊三角形;⑤ANBM,其中正確的有______________(填序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小有什么數(shù)量關系?請說明理由。(要求:畫出圖形,并寫出已知,求證,證明過程)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線l1y=kx+b與直線l2y=bx+k在同一坐標系中的大致位置是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系,O為坐標原點,點A(﹣1,0),點B(0, ).

(1)求∠BAO的度數(shù);
(2)如圖1,將△AOB繞點O順時針得△A′OB′,當A′恰好落在AB邊上時,設△AB′O的面積為S1 , △BA′O的面積為S2 , S1與S2有何關系?為什么?
(3)若將△AOB繞點O順時針旋轉(zhuǎn)到如圖2所示的位置,S1與S2的關系發(fā)生變化了嗎?證明你的判斷.

查看答案和解析>>

同步練習冊答案