【題目】如圖,已知拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C, D為OC的中點(diǎn),直線AD交拋物線于點(diǎn)E(2,6),且△ABE與△ABC的面積之比為3∶2.
(1)求這條拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)連結(jié)BD,試判斷BD與AD的位置關(guān)系,并說(shuō)明理由;
(3)連結(jié)BC交直線AD于點(diǎn)M,在直線AD上,是否存在這樣的點(diǎn)N(不與點(diǎn)M重合),使得以A、B、N為頂點(diǎn)的三角形與△ABM相似?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)根據(jù)△ABE與△ABC的面積之比為3∶2及E(2,6),可得C(0,4).
∴D(0,2). 由D(0,2)、E(2,6)可得直線AD所對(duì)應(yīng)的函數(shù)關(guān)系式為y=2x+2.
當(dāng)y=0時(shí),2x+2=0,解得x=-1. ∴A(-1,0).
由A(-1,0)、C(0,4)、E(2,6)求得拋物線對(duì)應(yīng)的函數(shù)關(guān)系式為
y=-x2+3x+4.
(2)BD⊥AD.
求得B(4,0),通過(guò)相似或勾股定理逆定理證得∠BDA=90°,即BD⊥AD.
(3)法1:求得M(,),AM=. 由△ANB∽△ABM,得=,即AB2=AM·AN,
∴52=·AN,解得AN=3.從而求得N(2,6).
法2:由OB=OC=4及∠BOC=90°得∠ABC=45°.
由BD⊥AD及BD=DE=2得∠AEB=45°.
∴△AEB∽△ABM,即點(diǎn)E符合條件,∴N(2,6).
【解析】(1)根據(jù)△ABE與△ABC的面積之比為3∶2及E(2,6),可得C(0,4).
∴D(0,2). 由D(0,2)、E(2,6)根據(jù)待定系數(shù)法可得直線AD所對(duì)應(yīng)的函數(shù)關(guān)系式為y=2x+2.
求得一次函數(shù)與x軸的交點(diǎn)坐標(biāo)A(-1,0),由A(-1,0)、C(0,4)、E(2,6)根據(jù)待定系數(shù)法
求得拋物線對(duì)應(yīng)的函數(shù)關(guān)系式為y=-x2+3x+4.
求得B(4,0),通過(guò)相似或勾股定理逆定理證得∠BDA=90°,即BD⊥AD.
由△ANB∽△ABM,根據(jù)對(duì)應(yīng)邊成比例即可求得點(diǎn)N的坐標(biāo)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】初三年級(jí)的一場(chǎng)籃球比賽中,如圖隊(duì)員甲正在投籃,已知球出手時(shí)離地面高m,與籃圈中心的水平距離為7m,當(dāng)球出手后水平距離為4m時(shí)到達(dá)最大高度4m,設(shè)籃球運(yùn)行的軌跡為拋物線,籃圈距地面3m.
(1)建立如圖所示的平面直角坐標(biāo)系,求拋物線的解析式并判斷此球能否準(zhǔn)確投中?
(2)此時(shí),若對(duì)方隊(duì)員乙在甲前面1m處跳起蓋帽攔截,已知乙的最大摸高為3.1m,那么他能否獲得成功?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1和2,在20×20的等距網(wǎng)格(每格的寬和高均是1個(gè)單位長(zhǎng))中,Rt△ABC從點(diǎn)A與點(diǎn)M重合的位置開始,以每秒1個(gè)單位長(zhǎng)的速度先向下平移,當(dāng)BC邊與網(wǎng)的底部重合時(shí),繼續(xù)同樣的速度向右平移,當(dāng)點(diǎn)C與點(diǎn)P重合時(shí),Rt△ABC停止移動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為x秒,△QAC的面積為y.
(1)如圖1,當(dāng)Rt△ABC向下平移到Rt△A1B1C1的位置時(shí),請(qǐng)你在網(wǎng)格中畫出Rt△A1B1C1關(guān)于直線QN成軸對(duì)稱的圖形;
(2)如圖2,在Rt△ABC向下平移的過(guò)程中,請(qǐng)你求出y與x的函數(shù)關(guān)系式,并說(shuō)明當(dāng)x分別取何值時(shí),y取得最大值和最小值?最大值和最小值分別是多少?
(3)在Rt△ABC向右平移的過(guò)程中,請(qǐng)你說(shuō)明當(dāng)x取何值時(shí),y取得最大值和最小值?最大值和最值分別是多少?為什么?(說(shuō)明:在(3)中,將視你解答方法的創(chuàng)新程度,給予1~4分的加分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙3名學(xué)生各自隨機(jī)選擇到A、B 2個(gè)書店購(gòu)書.
(1)求甲、乙2名學(xué)生在不同書店購(gòu)書的概率;
(2)求甲、乙、丙3名學(xué)生在同一書店購(gòu)書的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖以△ABC的一邊AB為直徑作⊙O,⊙O與BC邊的交點(diǎn)D恰好為BC的中點(diǎn),過(guò)點(diǎn)D作⊙O的切線交AC邊于點(diǎn)F.
(1)求證:DF⊥AC;
(2)若∠ABC=30°,求tan∠BCO的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖12,在△ABC中,∠C=90°,AB=10cm,BC=6cm. 點(diǎn)P從點(diǎn)A出發(fā),沿AB邊以2 cm/s的速度向點(diǎn)B勻速移動(dòng);點(diǎn)Q從點(diǎn)B出發(fā),沿BC邊以1 cm/s的速度向點(diǎn)C勻速移動(dòng). 當(dāng)一個(gè)運(yùn)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)運(yùn)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(s).
(1)當(dāng)PQ∥AC時(shí),求t的值;
(2)當(dāng)t為何值時(shí),QB=QP;
(3)當(dāng)t為何值時(shí),△PBQ的面積等于4.8cm 2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形中,延長(zhǎng)至使,以為邊作正方形,延長(zhǎng)交于,連接,,為的中點(diǎn),連接分別與,交于點(diǎn).則下列說(shuō)法:①;②;③;④.其中正確的有( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一坐標(biāo)系中,一次函數(shù)y=﹣mx+n2與二次函數(shù)y=x2+m的圖象可能是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2008年5月12日,汶川發(fā)生了里氏8.0級(jí)地震,給當(dāng)?shù)厝嗣裨斐闪司薮蟮膿p失.某中學(xué)全體師生積極捐款,其中九年級(jí)的3個(gè)班學(xué)生的捐款金額如下表:
老師統(tǒng)計(jì)時(shí)不小心把墨水滴到了其中兩個(gè)班級(jí)的捐款金額上,但他知道下面三條信息:
信息一:這三個(gè)班的捐款總金額是7700元;
信息二:二班的捐款金額比三班的捐款金額多300元;
信息三:一班學(xué)生平均每人捐款的金額大于48元,小于51元.
請(qǐng)根據(jù)以上信息,幫助老師解決:
(1)二班與三班的捐款金額各是多少元?
(2)一班的學(xué)生人數(shù)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com