【題目】如圖,在△ABC中,∠ABC=2∠C,AP和BQ分別為∠BAC和∠ABC的角平分線,若△ABQ的周長為18,BP=4,則AB的長為_____________
【答案】7
【解析】
根據(jù)角平分線的定義得到∠CBQ=∠ABC,再由等角對等邊得到CQ=BQ,得到BQ+AQ=CQ+AQ=AC;過點P作PD∥BQ,由“AAS”可證△ABP≌△ADP,由全等三角形的性質可得AB=AD,BP=DP,得到AB+BP=AD+CD=AC,即BQ+AQ=AB+BP,即可得出AB的長.
解:∵BQ是∠ABC的角平分線,
∴∠CBQ=∠ABC.
又∵∠ABC=2∠C,
∴∠CBQ=∠ABC=∠C,
∴ BQ=CQ,
∴ BQ+AQ=CQ+AQ=AC(1).
如圖所示,過點P作PD∥BQ交CQ于點D,
則∠CPD=∠CBQ,∠ADP=∠AQB,
∵∠AQB=∠C+∠CBQ=2∠C,
∴∠ADP=2∠C,
∴∠ABC=∠ADP.
又∵AP是∠BAC的角平分線,
∴∠BAP=∠CAP.
在△ABP和△ADP中,
,
∴△ABP≌△ADP(AAS),
∴AB=AD,BP=DP,
∴AB+BP=AD+CD=AC(2),
由(1)(2)得:BQ+AQ=AB+BP,
又∵△ABQ的周長為18,BP=4,
∴18-AB= AB+4,
∴ AB=7.
故答案為:7.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,B、A、F三點在同一直線上,(1)AD∥BC,(2)∠B=∠C,(3)AD平分∠EAC.
請你用其中兩個作為條件,另一個作為結論,構造一個真命題,并證明.
己知:______________________________________________________.
求證:______________________________________________________.
證明:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,AB=2,AD=4,以AB的垂直平分線為x軸,AB所在的直線為y軸,建立如圖所示的平面直角坐標系.
(1)求點的坐標:A ,B ,C , ,AD的中點E ;
(2)求以E為頂點,對稱軸平行于y軸,并且經(jīng)過點B,C的拋物線的解析式;
(3)求對角線BD與上述拋物線除點B以外的另一交點P的坐標;
(4)△PEB的面積S△PEB與△PBC的面積S△PBC具有怎樣的關系?證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y=2x+4,
(1)在如圖所示的平面直角坐標系中,畫出函數(shù)的圖象.
(2)求圖象與x軸的交點A的坐標,與y軸交點B的坐標.
(3)利用圖象直接寫出:當y<0時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖△ABC和△CDE均為等邊三角形,B、C、D三點在同一條直線上,連接線段BE、AD交于點F,連接CF,
(1)求證:∠FBC=∠FAC.
(2)求∠BFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,以AB為直徑的⊙O交AC于點E,交BC于點D,P為AC延長線上一點,且∠PBC=∠BAC,連接DE,BE.
(1)求證:BP是⊙O的切線;
(2)若sin∠PBC=,AB=10,求BP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(3,0),B(0,-1),連接AB,過B點作AB的垂線段,使BA=BC,連接AC.
(1)如圖1,求C點坐標;
(2)如圖2,若P點從A點出發(fā),沿x軸向左平移,連接BP,作等腰直角三角形△BPQ,連接CQ.求證:PA=CQ.
(3)在(2)的條件下,若C、P、Q三點共線,求此時P點坐標及∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車分別從、兩地同時出發(fā),相向行駛,已知甲車的速度大于乙車的速度,甲車到達地后馬上以另一速度原路返回地(掉頭的時間忽略不計),乙車到達地以后即停在地等待甲車.如圖所示為甲乙兩車間的距離(千米)與甲車的行駛時間(小時)之間的函數(shù)圖象,則當乙車到達地的時候,甲車與地的距離為__________千米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動.
(1)如果P,Q分別從A,B同時出發(fā),那么幾秒后,△PBQ的面積等于4cm2?
(2)如果P,Q分別從A,B同時出發(fā),那么幾秒后,△PBQ中PQ的長度等于5cm?
(3)在(1)中,當P,Q出發(fā)幾秒時,△PBQ有最大面積?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com